
Nonsolvable Groups with No Prime Dividing Three Character

Degrees

Mark L. Lewis and Donald L. White

Department of Mathematical Sciences, Kent State University

Kent, Ohio 44242

E-mail: lewis@math.kent.edu, white@math.kent.edu

June 9, 2010

1 Introduction

Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G,
and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at
least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved
that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show
that this bound is met. McVey has a different family of examples in [14].

We now consider this question for nonsolvable groups. We begin by classifying all simple and
almost simple groups with the property that no prime divides three degrees.

Theorem 1. Let S be a finite simple group and G a group such that S 6 G 6 AutS. No prime
divides three degrees of G if and only if S ∼= PSL2(q), q > 4 a prime power, and one of the following
holds:

1. G = S ∼= PSL2(q),

2. G ∼= PGL2(q), q odd,

3. G ∼= PSL2(3
f ) ⋊ Zf , where f 6= 3 is a prime,

4. G ∼= PSL2(2
f ) ⋊ Zf , where f is a prime,

5. G ∼= PSL2(2
f ) ⋊ Zr, where r < f is an odd prime divisor of f with r ∤ 2f − 1 and r ∤ 2f + 1.

The character degree sets in these cases are as in Table 1.

We then consider general nonsolvable groups. We will prove that if G is a nonsolvable group
where no prime divides three degrees in cd(G), then there is a solvable normal subgroup L so that
G/L is an almost simple group where no prime divides three degrees in cd(G/L). Hence, we can
study these groups based on Theorem 1. In particular, G can be associated with a unique simple
group of the form S ∼= PSL2(q), for a prime power q > 4, and S 6 G/L 6 AutS. If q > 5 is
odd or G/L properly contains PSL2(2

f ), then we prove that cd(G) = cd(G/L) and L = Z(G). If
G/L ∼= PSL2(2

f ), then |cd(G)| 6 |cd(G/L)|+ 1 = 5. In all nonsolvable cases, we have |cd(G)| 6 6,
and there are examples where the bound is met (see Table 1). Combined with Benjamin’s result,
we obtain the following theorem.

Theorem 2. If G is any group where no prime divides three degrees, then |cd(G)| 6 6.
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Table 1: Degrees of Almost Simple Groups with No Prime Dividing Three Degrees

Group G cd(G)

PSL2(q), q > 5 odd {1, q − 1, q, q + 1, (q + ǫ)/2}
PSL2(q), q > 4 even {1, q − 1, q, q + 1}
PGL2(q), q odd {1, q − 1, q, q + 1}
PSL2(3

2) ⋊ Z2
∼= PGL2(9) {1, 8, 9, 10}

PSL2(3
2) ⋊ Z2

∼= M10 {1, 9, 10, 16}
PSL2(3

2) ⋊ Z2
∼= S6 {1, 5, 9, 10, 16}

PSL2(3
f ) ⋊ Zf , f > 3 prime {1, 3f , (3f − 1)f, (3f + 1)f, (3f − 1)/2}

PSL2(2
2) ⋊ Z2

∼= S5 {1, 4, 5, 6}
PSL2(2

f ) ⋊ Zf , f > 2 prime {1, 2f − 1, 2f , (2f − 1)f, (2f + 1)f}
PSL2(2

f ) ⋊ Zr, r odd prime, r | f, r < f {1, 2f − 1, 2f , 2f + 1, (2f − 1)r, (2f + 1)r}

ǫ = (−1)(q−1)/2

This is related to a question about character degree graphs. We define the degree-vertex graph
of G to be Γ(G), whose vertex set is cd(G) \ {1} and there is an edge between a and b if (a, b) > 1.
Facts about this graph can be found in [9].

We wish to study the groups G where Γ(G) contains no triangles. Observe that if Γ(G) contains
no triangles, then no prime divides three degrees in cd(G). We then obtain the following.

Theorem 3. If G is any group and Γ(G) contains no triangles, then |cd(G)| 6 6.

We note that the examples of Benjamin in [1] and McVey in [14] have degree-vertex graphs
with no triangles, so this bound cannot be improved in the solvable case.

Observe that if G is an almost simple group for which no prime divides three degrees, as given
in Table 1, then Γ(G) contains no triangles. More generally, we have the following theorem, which
shows that the answer is the same as when no prime divides three degrees.

Theorem 4. Let G be a nonsolvable group. No prime divides three degrees in cd(G) if and only if
Γ(G) has no triangles.

It now seems natural to ask whether there exist groups so that no prime divides three degrees,
but Γ(G) contains a triangle. We have seen that there are no nonsolvable groups with this property.
There do exist solvable groups with the property, however. The first author, Alex Moretó, and Tom
Wolf have constructed such solvable groups in Section 6 of [10]. These groups are parametrized by
primes p and q so that p is congruent to 1 mod 3 and is not a Mersenne prime, and q is an odd
prime divisor of p + 1. The character degree set is {1, 3q, p2q, 3p3}, hence no prime divides three
degrees, but the degree-vertex graph is a triangle.

A related question has been studied by Wu and Zhang in [19] and by Li, Liu, and Song in [11],
where solvable and nonsolvable groups, respectively, whose character graphs contain no triangles
are classified. The character graph of a finite group G has the set of nonlinear characters in Irr(G) as
its vertex set (as opposed to cd(G)\{1} for the degree-vertex graph Γ(G)), with an edge between χ
and ψ in Irr(G) if (χ(1), ψ(1)) > 1. The condition on G that this graph is triangle-free is, of course,
much stronger than the condition that Γ(G) is triangle-free, or even that no prime divides three

2



distinct degrees. Our study of the graph Γ(G) is in the context of divisibility properties between
distinct character degrees.

2 Simple Groups

In this section we determine the finite simple groups for which no prime divides three distinct
degrees. Lemmas 2.1, 2.2, and 2.3 imply that no prime divides three degrees of the simple group G
if and only if G ∼= PSL2(q) for some prime power q.

2.1 Sporadic and Alternating Groups

Lemma 2.1. If G is a sporadic simple group, then there is a prime that divides three degrees of G.

Proof. Table 2 lists three distinct even degrees for each sporadic group G. Notation for the char-
acters is as in the Atlas [4].

Lemma 2.2. Let G be the simple alternating group An for n > 5. No prime divides three degrees
of G if and only if n = 5 or n = 6.

Proof. We have cd(A5) = {1, 3, 4, 5} and cd(A6) = {1, 5, 8, 9, 10}, hence no prime divides three
degrees of G for n = 5, 6. The group A7 has even character degrees 6, 10, and 14.

We now assume G = An with n > 8, and consider the irreducible character χr,s of the symmetric
group Sn corresponding to the partition (n − s − r, s + 1, 1r−1). As shown in [12], this partition
exists provided r > 1, s > 0, and r + 2s+ 1 6 n, in which case

χr,s(1) =

(

n
s

)(

n− s− 1
r − 1

)

n− 2s− r

r + s
.

Moreover, χr,s restricts irreducibly to An unless either s = 0 and n = 2r+1 or s = 1 and n = 2r+2.
Hence we have the degrees listed in Table 3 for An with n > 8.

Observe that χ1,1, χ2,1, and χ1,2 are even when n ≡ 0 (mod 4), χ2,0, χ3,0, and χ1,2 are even
when n ≡ 1 (mod 4), χ2,0, χ3,0, and χ2,1 are even when n ≡ 2 (mod 4), and χ3,0, χ1,1, and χ1,2 are
even when n ≡ 3 (mod 4). It is easily verified that since n > 8, these degrees of An are all distinct,
and so 2 divides three degrees of An for all n > 7.

2.2 Groups of Lie Type

Finally, we consider the groups of Lie type. These are the classical groups:

A1(q) ∼= PSL2(q), for q 6= 2, 3,

Aℓ(q) ∼= PSLℓ+1(q),
2Aℓ(q

2) ∼= PSUℓ+1(q
2), for ℓ > 2 (and q 6= 2 if ℓ = 2),

Bℓ(q) ∼= Ω2ℓ+1(q), Cℓ(q) ∼= PSp2ℓ(q), for ℓ > 2 (and q 6= 2 if ℓ = 2),

Dℓ(q) ∼= PΩ+
2ℓ(q),

2Dℓ(q
2) ∼= PΩ−

2ℓ(q) for ℓ > 4,

and the groups of exceptional Lie type:

G2(q) for q 6= 2,

2G2(q
2) for q2 6= 3, 2B2(q

2) for q2 6= 2,

2F 4(q
2) for q2 6= 2, 2F 4(2)′,

F4(q), E6(q), E7(q), E8(q),
2E6(q

2), 3D4(q
3).

The restrictions on ℓ and q are so that the groups will be simple and (generally) not isomorphic to
others in the list. These restrictions will always be assumed in what follows.
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Table 2: Degrees of Sporadic Groups

Grp. Chars. Degrees

M11 χ3 10
χ6 16
χ8 44

M12 χ4 16
χ7 54
χ11 66

J1 χ2 56
χ4 76
χ9 120

M22 χ7 154
χ8 210
χ10 280

J2 χ2 14
χ6 36
χ8 70

M23 χ2 22
χ5 230
χ10 770

HS χ2 22
χ4 154
χ10 770

J3 χ6 324
χ7 646
χ9 816

M24 χ7 252
χ10 770
χ12 990

M cL χ2 22
χ4 252
χ5 770

He χ6 680
χ12 1920
χ13 4080

Ru χ2 378
χ4 406
χ6 3276

Suz χ4 780
χ6 3432
χ9 5940

Grp. Chars. Degrees

O′N χ2 10944
χ3 13376
χ5 25916

Co3 χ6 896
χ9 2024
χ10 3520

Co2 χ6 2024
χ9 7084
χ14 12650

Fi22 χ2 78
χ5 1430
χ7 3080

HN χ4 760
χ5 3344
χ6 8778

Ly χ2 2480
χ4 45694
χ5 48174

Th χ2 248
χ4 27000
χ6 30628

Fi23 χ2 782
χ3 3588
χ5 25806

Co1 χ2 276
χ6 17250
χ7 27300

J4 χ6 887778
χ11 1776888
χ21 95288172

Fi′24 χ4 249458
χ13 48893768
χ14 74837400

B χ4 1139374
χ5 9458750
χ8 347643114

M χ3 21296876
χ4 842609326
χ5 18538750076
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Table 3: Degrees of An, n > 8

Char. Degree

χ2,0
(n− 1)(n− 2)

2

χ3,0
(n− 1)(n− 2)(n− 3)

2 · 3
χ1,1

n(n− 3)

2

χ2,1
n(n− 2)(n− 4)

3

χ1,2
n(n− 1)(n− 5)

2 · 3

Lemma 2.3. Let G be a simple group of Lie type. No prime divides three degrees of G if and only
if G ∼= PSL2(q) for some prime power q.

Proof. Suppose first that G ∼= PSL2(q). If q = 2f for f > 2, then

cd(G) = {1, 2f − 1, 2f , 2f + 1}

and distinct degrees are coprime. Observe that this includes the caseG = PSL2(5) ∼= PSL2(4) ∼= A5.
If q > 5 is odd, then

cd(G) = {1, q − 1, q, q + 1, (q + ǫ)/2},
where ǫ = (−1)(q−1)/2. The degrees 1 and q are coprime to all other degrees. Now (q−1, q+1) = 2,
but (q + ǫ)/2 is odd, and so the degrees q − 1, q + 1, and (q + ǫ)/2 cannot have a common prime
factor.

Assume now that G = G(q) is a simple group of Lie type over a field of characteristic p, so q is
a power of p, but G is not isomorphic to PSL2(q). If G ∼= PSL3(4), then G has character degrees
20, 35, and 45 (see the Atlas [4]), which are all divisible by 5. Similarly, if G ∼= 2F 4(2)′, then G has
even degrees 26, 78, and 300.

If G ∼= 2B2(q
2), where q2 = 22m+1, m > 1, then Table 6 lists three distinct degrees of G divisible

by Φ1Φ2 = q2 − 1 (see [18]). As q2 6= 2, these degrees are all divisible by a common prime.
For all other cases, three distinct character degrees divisible by p are given in Table 4 (classical

groups of rank greater than 2), Table 5 (groups of exceptional type of rank greater than 2), or
Table 6 (groups of rank 2). The degrees in Tables 4 and 5 are of unipotent characters and can be
found in [3]. The degrees in Table 6 are from [3], [16], and [18].

3 Almost Simple Groups

In this section, we assume S is a finite simple group and G is a group satisfying S 6 G 6 AutS.
We show via Lemmas 3.1, 3.3, and 3.4 that if G is not isomorphic to PSL2(q), then there is a prime
that divides three degrees of G.

If χ ∈ Irr(S) and χ̂ ∈ Irr(G) lies over χ, then χ̂(1) = aχ(1) for some integer a dividing |G : S|,
by Corollary 11.29 of [8]. In particular, χ(1) | χ̂(1), and so if χ1(1), χ2(1), χ3(1) have a common
prime divisor, then χ̂1(1), χ̂2(1), χ̂3(1) are also divisible by that prime. Thus a prime divides three
degrees of G unless two of these degrees of G are equal; that is, unless aχi(1) = bχj(1) for some
divisors a and b of |G : S|.
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Table 4: Degrees of Groups of Classical Lie Type

Group Labels Degrees

Aℓ(q), ℓ > 3 St qℓ(ℓ+1)/2

(1, ℓ) q · q
ℓ − 1

q − 1

(1, 1, ℓ− 1) q3 · (qℓ−1 − 1)(qℓ − 1)

(q − 1)(q2 − 1)

2Aℓ(q
2), ℓ > 3 St qℓ(ℓ+1)/2

(1, ℓ) q · q
ℓ − (−1)ℓ

q + 1

(1, 1, ℓ− 1) q3 · (qℓ−1 − (−1)ℓ−1)(qℓ − (−1)ℓ)

(q + 1)(q2 − 1)

Bℓ(q), Cℓ(q), ℓ > 3 St qℓ2

(

0 ℓ− 1
2

) 1

2
q2 · (qℓ−3 + 1)(qℓ−1 − 1)(q2ℓ − 1)

(q2 − 1)2
(

1 2 ℓ
0 1

) 1

2
q4 · (qℓ−2 − 1)(q2(ℓ−1) − 1)(qℓ + 1)

(q2 − 1)2

Dℓ(q), ℓ > 4 St qℓ(ℓ−1)

(

ℓ− 1
1

)

q · (qℓ−2 + 1)(qℓ − 1)

q2 − 1
(

1 2 ℓ
0 1 2

)

q6 · (q2(ℓ−2) − 1)(q2(ℓ−1) − 1)

(q2 − 1)(q4 − 1)

2Dℓ(q
2), ℓ > 4 St qℓ(ℓ−1)

(

1 ℓ− 1
−

)

q · (qℓ−2 − 1)(qℓ + 1)

q2 − 1
(

0 1 2 ℓ
1 2

)

q6 · (q2(ℓ−2) − 1)(q2(ℓ−1) − 1)

(q2 − 1)(q4 − 1)
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Table 5: Degrees of Groups of Exceptional Lie Type

Group Labels Degrees

3D4(q
3) φ1,6 q12

φ′1,3 qΦ12

φ′′1,3 q7Φ12

2F4(q
2) ε q24

ε′ q2Φ12Φ24

ε′′ q10Φ12Φ24

F4(q) φ1,24 q24

φ9,2 q2Φ2
3Φ

2
6Φ12

φ9,10 q10Φ2
3Φ

2
6Φ12

E6(q) φ1,36 q36

φ6,1 qΦ8Φ9

φ6,25 q25Φ8Φ9

2E6(q
2) φ1,24 q36

φ′2,4 qΦ8Φ18

φ′′2,16 q25Φ8Φ18

E7(q) φ1,63 q63

φ7,1 qΦ7Φ12Φ14

φ7,46 q46Φ7Φ12Φ14

E8(q) φ1,120 q120

φ8,1 qΦ2
4Φ8Φ12Φ20Φ24

φ8,91 q91Φ2
4Φ8Φ12Φ20Φ24
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Table 6: Degrees of Groups of Rank 2

Group Labels Degrees

A2(q), q 6= 2, 4 St q3

χqs q(q + 1)

χqt q(q2 + q + 1)

2A2(q
2), q 6= 2 St q3

χqs q(q − 1)

χqt q(q2 − q + 1)

B2(q), C2(q), q 6= 2 St q4

(

0 2
1

)

1
2q(q + 1)2

(

1 2
0

)

1
2q(q

2 + 1)

2B2(q
2), q2 6= 2 1√

2
qΦ1Φ2

Φ1Φ2Φ
′
8

Φ1Φ2Φ
′′
8

G2(q), q 6= 2 φ1,6 q6

G2[−1] 1
2qΦ

2
1Φ3

φ2,2
1
2qΦ

2
2Φ6

2G2(q
2), q2 6= 3 ε q6

cusp 1
2
√

3
qΦ1Φ2Φ

′
12

cusp 1
2
√

3
qΦ1Φ2Φ

′′
12
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Lemma 3.1. If S is a sporadic simple group or an alternating group An with n > 7, and S 6 G 6

AutS, then there is a prime that divides three degrees of G.

Proof. First assume S is a sporadic group, hence |AutS : S| 6 2 and Table 2 lists three even
character degrees of S. Thus if G 6= S, then |G : S| = 2. Observe that in all cases, no character
degree given is 2 times another of the degrees. Hence, by the remarks above, degrees of G that lie
over those of S shown in Table 2 are even and distinct.

If S = An with n > 7, then |AutS : S| = 2. We may therefore assume G = AutS ∼= Sn. The
Atlas [4] shows that G ∼= S7 has even degrees 6, 14, and 20. For n > 8, the degrees of An shown in
Table 3 are in fact restrictions of irreducible characters of G ∼= Sn, and so Sn also has three even
degrees.

We should note that A5
∼= PSL2(4) ∼= PSL2(5) and A6

∼= PSL2(9). These groups will be
considered along with the groups PSL2(q) later.

We next consider the case where S = S(q) is a simple group of Lie type of rank greater than 2
over a field of q elements of characteristic p. In this case, Tables 4 and 5 list three degrees of S that
are divisible by p. In order to prove that degrees of G lying over these degrees of S are distinct, we
will require the following elementary lemma.

Lemma 3.2. If q = pf , where p is prime and f is a positive integer, then q > 2f unless p = 2 and
f 6 2, in which case q = 2f .

Proof. If q = 2 or q = 22, then clearly q = 2f . Thus we assume that if p = 2, then f > 3. Observe
that in general pf − 1 = (p− 1)(pf−1 + pf−2 + · · · + p2 + p+ 1).

If p > 3, then

pf = (p− 1)(pf−1 + pf−2 + · · · + p2 + p+ 1) + 1

> 2(1 + 1 + · · · + 1 + 1 + 1) + 1

= 2f + 1.

Hence q = pf > 2f in this case.
If p = 2, then we have f > 3. We have

2f = (2 − 1)(2f−1 + 2f−2 + · · · + 22 + 2 + 1) + 1

= 2f−1 + 2f−2 + · · · + 22 + 2 + 2

= 2(2f−2 + 2f−3 + · · · + 2 + 1 + 1)

> 2(1 + 1 + · · · + 2 + 1 + 1)

= 2(f + 1).

Hence q = 2f > 2f again in this case.

Lemma 3.3. If S is a simple group of Lie type of rank greater than 2 and S 6 G 6 AutS, then
there is a prime that divides three degrees of G.

Proof. If S ∼= 2F 4(2)′, then |AutS : S| = 2, and so G = S or G = AutS. By the Atlas [4] character
table, AutS has even degrees 52, 78, and 300.

Now let S = S(q) be a simple group of Lie type of rank greater than 2 over a field of q elements
of characteristic p (other than 2F 4(2)′). Three degrees of S are given in Table 4 or Table 5. In each
case, one of these degrees is that of the Steinberg character St. Denote the other two characters
by χ1 and χ2, in the order listed in the tables. The degree of each of these characters is divisible
by p.

Let Ŝt, χ̂1, and χ̂2 be irreducible characters of G lying over St, χ1, and χ2, respectively. The
degree of each of these is divisible by p, and so there is a prime dividing three degrees of G unless
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two of the degrees are equal. The Steinberg character St extends to an irreducible character of
AutS (see [15]), hence Ŝt(1) is a power of q. Both χ1(1) and χ2(1) are divisible by primes other
than p, and so Ŝt(1) cannot be equal to either of χ̂1(1) or χ̂2(1).

Observe that χ2(1) has a greater p-part than χ1(1) in each case, and so we have (χ2(1))p =
pα(χ1(1))p for some positive integer α. As noted previously, χ̂1(1) = aχ1(1) and χ̂2(1) = bχ2(1)
for some integers a, b dividing |G : S|, hence also |AutS : S|. Therefore, if χ̂1(1) = χ̂2(1), then pα

must be a divisor of |AutS : S|.
In Atlas [4] notation, |AutS : S| = dfg, where d, f , and g are the orders of the groups of

diagonal, field, and graph automorphisms, respectively, modulo inner automorphisms. In particular,
(d, q) = 1 in all cases and g 6 2 unless S ∼= D4(q), in which case g = 6. The parameter f is defined
by q = pf except when S ∼= 3D4(q

3), where q3 = pf , or when S is one of 2Aℓ(q
2), 2Dℓ(q

2), 2E6(q
2),

or 2F 4(q
2), where q2 = pf .

It follows that |AutS : S|p divides 2f , except possibly in the case S ∼= D4(q), where |AutS : S|p
divides 6f . Recall that (χ2(1))p = pα(χ1(1))p and observe that pα > (pf )2, except in the case
S ∼= 2Aℓ(q

2), where pα = pf . If S is neither D4(q) nor 2Aℓ(q
2), then by Lemma 3.2,

pα
> (pf )2 > pf · 2f > 2f > |AutS : S|p.

If S ∼= 2Aℓ(q
2), then g = 1 and so |AutS : S|p divides f , hence

pα = pf
> 2f > f > |AutS : S|p.

If S ∼= D4(q), then g = 6, but (χ̂2(1))p = (pf )5(χ̂1(1))p, and so

pα
> (pf )5 > (pf )4 · 2f > 6f > |AutS : S|p.

Hence in all cases, if (χ2(1))p = pα(χ1(1))p, then pα ∤ |AutS : S|. Therefore, χ̂1(1) 6= χ̂2(1) and so
Ŝt(1), χ̂1(1), and χ̂2(1) are distinct degrees of G divisible by p.

Lemma 3.4. If S is a simple group of Lie type of rank 2 and S 6 G 6 AutS, then there is a
prime that divides three degrees of G.

Proof. Let S = S(q) be a simple group of Lie type of rank 2 over a field of q elements of charac-
teristic p. Three degrees of S, for S other than A2(4) ∼= PSL3(4), are given in Table 6. Denote
the three characters by χ1, χ2, and χ3, in the order listed in the table. Let χ̂1, χ̂2, and χ̂3 be
irreducible characters of G lying over χ1, χ2, and χ3, respectively.

The degrees χ̂1(1), χ̂2(1), χ̂3(1) have a common prime factor, hence three degrees of G are
divisible by that prime unless two of the degrees are equal. Moreover, if χ̂i(1) = χ̂j(1), then
aχi(1) = bχj(1) for some divisors a, b of |G : S|, hence of |AutS : S|.

If S ∼= PSL3(4), then S has degrees χ1(1) = 20, χ2(1) = 35, and χ3(1) = 45. In this case,
|AutS : S| = 12. If aχ2(1) = bχj(1) for j = 1, 3, then 7 ∤ χj(1) implies 7 | b, which contradicts
b | 12. If aχ3(1) = bχj(1) for j = 1, 2, then (9, χj(1)) = 1 implies 9 | b, again contradicting b | 12.
Hence χ̂1(1), χ̂2(1), χ̂3(1) are distinct degrees of G divisible by 5. We may now assume S is a
simple group of Lie type of rank 2 other than PSL3(4).

If S ∼= 2B2(q
2), then χ1(1) is even, while χ2(1) and χ3(1) are odd. In this case, |AutS : S| = f ,

where q2 = 22m+1 = 2f . Hence |AutS : S| is odd, thus χ̂2(1) and χ̂3(1) are also odd, and so neither
can equal χ̂1(1), which is even.

In all other cases, χ1 is the Steinberg character St, which extends irreducibly to G (see [15]).
Hence χ̂1(1) is a power of p, whereas χ̂2(1) and χ̂3(1) are divisible by other primes. Again, this
implies that neither χ̂2(1) nor χ̂3(1) can equal χ̂1(1).

We now have that χ̂1(1), χ̂2(1), χ̂3(1) are three degrees of G with a common prime factor unless
χ̂2(1) = χ̂3(1). As noted previously, this would imply aχ2(1) = bχ3(1) for some divisors a and b of
|AutS : S|. We assume this holds and obtain a contradiction in each case.
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Type A2. If S ∼= A2(q) ∼= PSL3(q), then χ2(1) = q(q + 1) and χ3(1) = q(q2 + q + 1). In
this case, |AutS : S| = 2df , where d = (3, q − 1) and q = pf . Since (q + 1, q2 + q + 1) = 1,
a · q(q + 1) = b · q(q2 + q + 1) implies q + 1 | b and q2 + q + 1 | a. Thus (q + 1)(q2 + q + 1) divides
|AutS : S|, hence divides 6f . However, q > 4 and q = pf > 2f by Lemma 3.2, hence

(q + 1)(q2 + q + 1) > q3 > q2 · 2f > 6f,

a contradiction.

Type 2A2. If S ∼= 2A2(q
2) ∼= PSU3(q

2), then χ2(1) = q(q − 1) and χ3(1) = q(q2 − q + 1).
In this case, |AutS : S| = df , where d = (3, q + 1) and q2 = pf . Since (q − 1, q2 − q + 1) = 1,
a · q(q − 1) = b · q(q2 − q + 1) implies q − 1 | b and q2 − q + 1 | a. Thus (q − 1)(q2 − q + 1) divides
|AutS : S|, hence divides 3f . However, q > 3 and q = pf/2 > f by Lemma 3.2, hence

(q − 1)(q2 − q + 1) = (q − 1)(q(q − 1) + 1) > (q − 1)2q > 3f,

a contradiction.

Types B2, C2. If S ∼= B2(q) ∼= C2(q) ∼= PSp4(q), then χ2(1) = 1
2q(q + 1)2 and χ3(1) =

1
2q(q

2 + 1). In this case, |AutS : S| = 2f , where q = pf . (If q is odd, then d = 2 and g = 1, and
if q is even, then d = 1 and g = 2.) We assume aχ2(1) = bχ3(1), and hence a(q + 1)2 = b(q2 + 1).

If q is even, then ((q + 1)2, q2 + 1) = 1, and so (q + 1)2 | b and q2 + 1 | a. Thus (q + 1)2(q2 + 1)
divides |AutS : S| = 2f . However, q > 2 and q = pf > 2f by Lemma 3.2, hence

(q + 1)2(q2 + 1) > q4 > q3 · 2f > 2f,

a contradiction.
If q is odd, then ((q+1)2, q2+1) = 2, and so 1

2(q+1)2 | b and 1
2(q2+1) | a. Thus 1

4(q+1)2(q2+1)
divides |AutS : S| = 2f . However, q > 2 and q = pf > 2f by Lemma 3.2, hence

1

4
(q + 1)2(q2 + 1) >

1

4
q4 >

1

4
q3 · 2f > 2f,

a contradiction.

Type 2B2. Let S ∼= 2B2(q
2), where q2 = 22m+1 with m > 1. Let Φ′

8 = q2 +
√

2q + 1 and
Φ′′

8 = q2 −
√

2q + 1, so that Φ′
8Φ

′′
8 = Φ8 = q4 + 1. We have χ2(1) = Φ1Φ2Φ

′
8 and χ3(1) = Φ1Φ2Φ

′′
8.

In this case, |AutS : S| = f , where q2 = 2f ; that is, f = 2m+ 1. Since (Φ′
8, Φ

′′
8) = 1,

a · Φ1Φ2Φ
′
8 = b · Φ1Φ2Φ

′′
8

implies Φ′
8 | b and Φ′′

8 | a. Thus Φ′
8Φ

′′
8 = Φ8 = q4 + 1 divides |AutS : S| = f . However, by

Lemma 3.2, q2 = 2f > 2f , and so

q4 + 1 > q2q2 = q2 · 2f
> q2 · 2f > f,

a contradiction.

Type G2. If S ∼= G2(q), then χ2(1) = 1
2q(q − 1)(q3 − 1) and χ3(1) = 1

2q(q + 1)(q3 + 1). In
this case, |AutS : S| = fg, where q = pf , g = 2 if p = 3, and g = 1 if p 6= 3. We assume
aχ2(1) = bχ3(1), and hence a(q − 1)(q3 − 1) = b(q + 1)(q3 + 1).

If q is even, then ((q−1)(q3−1), (q+1)(q3+1)) = 1, and so (q−1)(q3−1) | b and (q+1)(q3+1) | a.
Thus (q2 − 1)(q6 − 1) divides |AutS : S| = f . However, by Lemma 3.2, q = pf > 2f , and so
(q2 − 1)(q6 − 1) > q > f , a contradiction.
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If q is odd, then ((q − 1)(q3 − 1), (q + 1)(q3 + 1)) = 4, and so in particular 1
4(q + 1)(q3 + 1) | a.

Thus 1
4(q + 1)(q3 + 1) divides |AutS : S|, hence also divides 2f . However, q > 2 and q = pf > 2f

by Lemma 3.2, hence
1

4
(q + 1)(q3 + 1) >

1

4
q4 >

1

4
q3 · 2f > 2f,

a contradiction.

Type 2G2. Let S ∼= 2G2(q
2), where q2 = 32m+1 with m > 1. Let Φ′

12 = q2 −
√

3q + 1 and
Φ′′

12 = q2 +
√

3q + 1, so that Φ′
12Φ

′′
12 = Φ12 = q4 − q2 + 1. We have χ2(1) = 1

2
√

3
qΦ1Φ2Φ

′
12 and

χ3(1) = 1
2
√

3
qΦ1Φ2Φ

′′
12. In this case, |AutS : S| = f , where q2 = 3f ; that is, f = 2m + 1. We

assume aχ2(1) = bχ3(1), and hence aΦ′
12 = bΦ′′

12.
Since (Φ′

12, Φ
′′
12) = 1, we have Φ′

12 | b and Φ′′
12 | a. Thus Φ′

12Φ
′′
12 = Φ12 = q4 − q2 + 1 divides

|AutS : S| = f . However, by Lemma 3.2, q2 = 3f > 2f , and so

q4 − q2 + 1 > (q2 − 1)q2 > q2 > f,

a contradiction.

4 Subgroups of Aut(PSL2(q))

We have shown that if no prime divides three degrees of G, where S 6 G 6 AutS for a simple
group S, then S ∼= PSL2(q) for some prime power q. In order to complete the proof of Theorem 1,
we must determine the groups G with PSL2(q) 6 G 6 Aut PSL2(q) such that no prime divides
three degrees. This is accomplished in Lemmas 4.6, 4.7, 4.8, 4.9, and 4.10.

We first require some preliminary results on the actions of automorphisms of PSL2(q).

4.1 Actions of Automorphisms on Irreducible Characters

We now consider the case S ∼= PSL2(q), q = pf > 5 for a prime p, and S 6 G 6 AutS. We will
require some detailed information about the actions of automorphisms of PSL2(q) on its irreducible
characters. We will use the notation of [5] for the conjugacy classes and characters of SL2(q).

As is well-known, the outer automorphism group of SL2(q) is of order (2, q − 1) · f , and is
generated by a diagonal automorphism δ of order (2, q− 1) and a field automorphism ϕ of order f .
(See [4], for example.) Moreover, δ and ϕ commute modulo inner automorphisms. If q is odd,
then the center Z of SL2(q) is of order 2 and so is fixed elementwise by both δ and ϕ. Hence δ
and ϕ induce automorphisms of the same orders on PSL2(q) = SL2(q)/Z. We will use the same
notation for the automorphisms of both SL2(q) and PSL2(q). An irreducible character of SL2(q)
is an irreducible character of PSL2(q) if and only if Z is contained in its kernel, and in this case it
is fixed by an automorphism of SL2(q) if and only if it is fixed by the automorphism induced on
PSL2(q).

As in [5], denote by a an element of order q − 1 and by b an element of order q + 1 in SL2(q).
If q is odd, let z denote the element of order 2 in the center of SL2(q). We denote by c an element
of order q and, if q is odd, d denotes an element of order q not conjugate to c. The set

{1, z, c, d, zc, zd, aℓ, bm | 1 6 ℓ 6
q − 1

2
− 1, 1 6 m 6

q + 1

2
− 1}

is a complete set of conjugacy class representatives for SL2(q) for odd q and

{1, c, aℓ, bm | 1 6 ℓ 6
q

2
− 1, 1 6 m 6

q

2
}

is a complete set of class representatives for even q. It is straightforward to verify the following
result.
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Lemma 4.1. Assume the notation introduced above.
If q is odd then

i. δ fixes the classes of 1, z, aℓ, and bm;

ii. δ interchanges the classes of c and d and interchanges the classes of zc and zd.

For all q = pf , f > 2, k a positive divisor of f ,

iii. ϕk fixes the classes of 1, z, c, zc, d, and zd if q is odd and fixes the classes of 1 and c if q is
even;

iv. ϕk sends aℓ to the class of ar, where ℓpk ≡ ±r(mod q − 1);

v. ϕk sends bm to the class of bs, where mpk ≡ ±s(mod q + 1).

In all cases, SL2(q) has the principal character of degree 1 and the Steinberg character, St, of
degree q. Both of these are irreducible characters of S = PSL2(q), invariant under δ and ϕ, and
they extend to irreducible characters of AutS (see [15]).

Also in all cases, SL2(q) has irreducible characters χi of degree q+1 for 1 6 i 6 [q/2]−1, and θj

of degree q − 1 for 1 6 j 6 [q/2]. (Here, [x] denotes the greatest integer less than or equal to the
number x.) If q is odd, then χi, θj is an irreducible character of S = PSL2(q) if and only if i, j,
respectively, is even.

If q is odd, let ǫ = (−1)(q−1)/2. In this case, SL2(q) has two irreducible characters of degree
(q + 1)/2 and two of degree (q − 1)/2. Only the two characters of degree (q + ǫ)/2 are irreducible
characters of S = PSL2(q), and we denote these by µ1, µ2.

Lemma 4.2. If q is odd, then ϕ fixes the characters µ1, µ2, while µδ
1 = µ2 and µδ

2 = µ1; thus for
S 6 G 6 AutS, the inertia group of µ1 and µ2 in G is IG(µi) = G ∩ S〈ϕ〉.

Proof. This follows from Lemma 4.1 and the character table of SL2(q) in [5].

Lemma 4.3. If q is odd, then δ fixes χi and θj for all i, j. For all q = pf , f > 2, and k a positive
divisor of f ,

i. ϕk fixes χi if and only if pf − 1 | (pk − 1)i or pf − 1 | (pk + 1)i;

ii. ϕk fixes θj if and only if pf + 1 | (pk + 1)j or pf + 1 | (pk − 1)j.

Proof. By the character table of SL2(q) in [5] and Lemma 4.1, all χi have the same value on the
classes that are not fixed by δ, and similarly for all θj . Hence all χi and θj are fixed by δ.

Among classes not fixed by ϕk, the values of the χi differ only on the classes of aℓ. Denoting

by ρ a complex primitive (q − 1)th root of unity, we have χi(a
ℓ) = ρiℓ + ρ−iℓ. Now χϕk

i = χi if and

only if χi((a
ϕ−k

)ℓ) = χi(a
ℓ) for 1 6 ℓ 6 [q/2] − 1. Hence χi is fixed by ϕk if and only if

ρipkℓ + ρ−ipkℓ = ρiℓ + ρ−iℓ

for 1 6 ℓ 6 [q/2] − 1. It is easy to check that this holds if and only if

ipkℓ ≡ ±iℓ(mod q − 1)

for all ℓ. This holds for all ℓ if and only if it holds for ℓ = 1. Hence we have χi is fixed by ϕk if and
only if ipk ≡ ±i(mod q − 1), and (i) follows.
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Of the classes not fixed by ϕk, the values of the θj differ only on the classes of bm. Denoting

by σ a complex primitive (q + 1)th root of unity, we have θj(b
m) = −(σjm + σ−jm). Now θϕk

j = θj

if and only if θj((b
ϕ−k

)m) = θj(b
m) for 1 6 m 6 [q/2]. Hence θj is fixed by ϕk if and only if

σjpkm + σ−jpkm = σjm + σ−jm

for 1 6 m 6 [q/2]. It is easy to check that this holds if and only if

jpkm ≡ ±jm(mod q + 1)

for all m. This holds for all m if and only if it holds for m = 1. Hence we have θj is fixed by ϕk if
and only if jpk ≡ ±j(mod q + 1), and (ii) follows.

For the next lemma, observe that |PGL2(q) : PSL2(q)| = (2, q − 1) and, if q is odd, then
PGL2(q) = PSL2(q)〈δ〉 = S〈δ〉. Hence for S 6 G 6 Aut(S), if q is even, then G ∩ PGL2(q) = S,
and if q is odd, then G ∩ PGL2(q) = PGL2(q) if δ ∈ G and G ∩ PGL2(q) = S otherwise.

Lemma 4.4. Let q = pf > 5, where p is prime, f > 2, and q 6= 9. If S 6 G 6 AutS, then there
exist characters χ, θ ∈ Irr(S) of degree q + 1, q − 1, respectively, whose inertia groups in G are
IG(χ) = IG(θ) = G ∩ S〈δ〉 = G ∩ PGL2(q).

Proof. First assume q = 2f is even, so that f > 3. Observe that if 1 6 k < f , then

2f − 2k = 2k(2f−k − 1) > 2

since k > 1 and f > 3. Therefore 2f − 1 > 2k + 1.
In this case, we have PGL2(q) = PSL2(q), so S 6 G 6 S〈ϕ〉, and S has irreducible characters

χ1, θ1 of degree q+1, q−1, respectively. If k < f is a positive divisor of f , then since 2f −1 > 2k+1,
neither condition (i) nor condition (ii) of Lemma 4.3 can hold with i = 1 or j = 1. It follows that S
is the inertia group of both χ = χ1 and θ = θ1 in G.

Now let q = pf for an odd prime p and f > 2, with q 6= 9. Note that if 1 6 k < f and
pf − 1 6 2(pk + 1), then pk(pf−k − 2) 6 3. But p > 3, and so this implies p = 3, k = 1, and f = 2,
contradicting q = pf 6= 9. Hence we have that if 1 6 k < f , then pf − 1 > 2(pk + 1).

Since 2 < (q − 3)/2, both χ2 and θ2 are irreducible characters of PSL2(q), and both are fixed
by δ. If k < f is a positive divisor of f , then since pf − 1 > 2(pk + 1), neither condition (i) nor
condition (ii) of Lemma 4.3 can hold with i = 2 or j = 2. It follows that G ∩ S〈δ〉 = G ∩ PGL2(q)
is the inertia group of both χ = χ2 and θ = θ2 in G.

We note that in the case q = 9, S ∼= PSL2(9) ∼= A6 and both δ and ϕ are of order 2. There is a
character θ of S of degree q− 1 = 8 with IG(θ) = G∩PGL2(q) as in the lemma. However, there is
only one irreducible character of S of degree q + 1 = 10, which is therefore invariant in AutS.

Lemma 4.5. Let q = pf > 5, where p is prime, f > 2, and q 6= 9. If S 6 G 6 AutS, then G has
irreducible characters of degrees (q + 1)|G : G ∩ PGL2(q)| and (q − 1)|G : G ∩ PGL2(q)|.

Proof. Since (G ∩ PGL2(q))/S is cyclic (of order 1 or 2), the characters χ, θ of Lemma 4.4 extend
to χ̃, θ̃ ∈ Irr(G∩PGL2(q)). By Clifford’s theorem, χ̃G

2 , θ̃G
2 are irreducible characters of G of degree

(q + 1)|G : G ∩ PGL2(q)|, (q − 1)|G : G ∩ PGL2(q)|, respectively.
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4.2 Aut(PSL2(q)), q Odd

We now let S = PSL2(q), q = pf > 5, p an odd prime, and G a group with S < G 6 AutS. We
first consider the cases where G is contained in either S〈δ〉 = PGL2(q) or S〈ϕ〉.
Lemma 4.6. No prime divides three degrees of PGL2(q).

Proof. By the character table of G = S〈δ〉 = PGL2(q) in [17], we have cd(G) = {1, q − 1, q, q + 1}.
As 1 and q are relative prime to the other degrees, no prime can divide three degrees.

In the next results, we consider S < G 6 S〈ϕ〉, so that G ∩ PGL2(q) = S. In particular,
G = S〈ϕℓ〉 for some ℓ | f with 1 6 ℓ < f .

Lemma 4.7. Let S ∼= PSL2(q), where q = pf , p 6= 3 is an odd prime, and f > 2. If S < G 6 S〈ϕ〉,
then there is a prime that divides three degrees of G.

Proof. Let |G : S| = 2am > 1, where a > 0 and m > 1 is odd. By Lemma 4.5, we know that G has
characters of degrees (q + 1)|G : S| and (q − 1)|G : S|. We consider the cases m = 1 and m 6= 1
separately.

Suppose first that m = 1, so that |G : S| = 2a > 1 and f must be even. Let

i =
pf − 1

p− 1
= pf−1 + pf−2 + · · · + p+ 1.

Since p > 5, we have that i < (q−1)/2, hence i 6 (q−3)/2, and so χi ∈ Irr(SL2(q)). Since p is odd
and f is even, we have that i is even, and so χi ∈ Irr(S). Observe that pf − 1 | (p− 1)i, hence χi is
invariant under ϕ by Lemma 4.3. Therefore, χi is invariant in G and since G/S is cyclic, χi extends
to an irreducible character χ̃i of G of degree q + 1. Hence G has degrees q + 1, (q + 1)|G : S|, and
(q − 1)|G : S|, which are distinct and even.

We now suppose m 6= 1. Let k = f/m, so that f/k = m is odd and hence pk + 1 | pf + 1.
Let j = 2(pf + 1)/(pk + 1), an even integer. Since pk + 1 > 5, we have that j < (q + 1)/2.
Therefore j 6 (q − 1)/2, so that θj ∈ Irr(SL2(q)), and since j is even, θj ∈ Irr(S). Observe that
pf + 1 | (pk + 1)j, and hence θj is invariant under ϕk.

Since the order m of ϕk divides |G : S|, we have ϕk ∈ G and so S〈ϕk〉 6 I 6 G, where I is
the stabilizer of θj in G. Thus θj extends to an irreducible character θ̃j of I, and θ̃j induces to
an irreducible character of G of degree (q − 1)|G : I|. Therefore, G has degrees (q − 1)|G : I|,
(q − 1)|G : S|, and (q + 1)|G : S|, which are all even and, since m 6= 1, are distinct.

Lemma 4.8. Let S ∼= PSL2(q), where q = 3f and f > 2. If S < G 6 S〈ϕ〉, then no prime divides
three degrees of G if and only if f is a prime and f 6= 3.

Proof. We first consider the case where f is prime, hence G = S〈ϕ〉 and |G : S| = f . If f = 2,
then S ∼= PSL2(9) ∼= A6. In this case, we have G = S〈ϕ〉 ∼= S6 and cd(G) = {1, 5, 9, 10, 16}, and so
no prime divides three degrees of G, as claimed. However, if f = 3, then S ∼= PSL2(27) and G has
degrees q = 33, (q − 1)f = 26 · 3, and (q + 1)f = 28 · 3 that are divisible by 3, using Lemma 4.5 or
the Atlas [4].

We may now assume that f > 5 is prime, S ∼= PSL2(3
f ), and G = S〈ϕ〉, so that |G : S| = f .

Moreover, G/S is cyclic of prime order, hence each irreducible character of S either extends to an
irreducible character of G, if invariant under ϕ, or induces to an irreducible character of G, if not
invariant under ϕ.

We have
cd(S) = {1, 3f − 1, 3f , 3f + 1, (3f − 1)/2}.

By [15], the Steinberg character of degree 3f extends to G and by Lemma 4.2, the characters of
degree (3f − 1)/2 extend to G. Of course, the only character of degree 1 is the principal character,
which also extends to G.
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The characters of degree 3f − 1 are the characters θj , where j is even and 1 6 j 6 (3f − 1)/2.
By Lemma 4.3, θj is invariant under ϕ if and only if 3f + 1 | (31 + 1)j or 3f + 1 | (31 − 1)j. Hence
if θj is invariant under ϕ, then (3f +1)/4 | j. Since f is odd, 3f +1 ≡ 4 (mod 8), so that (3f +1)/4
is odd, and since j is even, we must have (3f + 1)/2 | j. This contradicts 1 6 j 6 (3f − 1)/2,
hence θj is not invariant under ϕ and θG

j is an irreducible character of G of degree (3f − 1)f .

The characters of degree 3f + 1 are the characters χi, where i is even and 1 6 i 6 (3f − 3)/2.
By Lemma 4.3, χi is invariant under ϕ if and only if 3f − 1 | (31 − 1)i or 3f − 1 | (31 + 1)i. Hence
if χi is invariant under ϕ, then 3f − 1 | 4i. Since f is odd, 3f − 1 ≡ 2 (mod 4), so (3f − 1)/2 is
odd and this implies (3f − 1)/2 | i. This contradicts 1 6 i 6 (3f − 3)/2, hence χi is not invariant
under ϕ and χG

i is an irreducible character of G of degree (3f + 1)f .
We now have that

cd(G) = {1, 3f , (3f − 1)f, (3f + 1)f, (3f − 1)/2}.

Since f 6= 3, 3f is relatively prime to all other degrees. Since f is odd, (3f − 1)/2 is odd and
relatively prime to 3f +1. By Fermat’s theorem, 3f ≡ 3 (mod f), hence f ∤ 3f −1 and so (3f −1)/2
and (3f + 1)f are relatively prime. Therefore no prime divides three degrees of G.

Next, we consider the case where f is not prime. By Lemma 4.5, G has degrees (3f − 1)|G : S|
and (3f + 1)|G : S| in any case.

Suppose first that f is even and let i = (3f − 1)/4. We have that i 6 (3f − 3)/2 and since f
is even i is also even, hence χi ∈ Irr(S). Observe that 3f − 1 | (31 + 1)i, and so χi is invariant
under ϕ by Lemma 4.3. Therefore, χi extends to an irreducible character of G of degree 3f + 1.
Since |G : S| > 1, the degrees 3f + 1, (3f − 1)|G : S|, and (3f + 1)|G : S| are distinct and even.

Finally, we assume f is odd and is not prime. Let |G : S| = m, so that 1 < m 6 f and m | f .
There is an integer ℓ such that 1 < ℓ < f and ℓ | m. Let k = f/ℓ and set j = 2(3f + 1)/(3k + 1).
Note that f is odd and k | f , so (3f +1)/(3k +1) is an integer and j is even. Since k > 1, 3k +1 > 4,
so that j < (3f + 1)/2. Hence j 6 (3f − 1)/2 and so θj ∈ Irr(S). Observe that 3f + 1 | (3k + 1)j,
hence θj is invariant under ϕk.

Since S〈ϕ〉/S is cyclic and the order of ϕk is ℓ > 1, which divides |G : S|, we have that
ϕk ∈ G. Hence S < S〈ϕk〉 6 I 6 G, where I is the stabilizer of θj in G. Thus θj extends to an
irreducible character θ̃j of I, and θ̃j induces to an irreducible character of G of degree (3f −1)|G : I|.
Therefore, G has degrees (3f − 1)|G : I|, (3f − 1)|G : S|, and (3f + 1)|G : S|, which are all even
and, since S < I, are distinct.

Finally, we consider the case where S < G 6 AutS and G is not contained in either of
S〈δ〉 = PGL2(q) or S〈ϕ〉. In particular, |G : G ∩ S〈ϕ〉| = 2 and |G : G ∩ PGL2(q)| > 1.

Lemma 4.9. Let S ∼= PSL2(q), where q = pf , p is an odd prime, and f > 2. If S < G 6 AutS
but G is contained in neither of S〈δ〉 = PGL2(q) or S〈ϕ〉, then there is a prime that divides three
degrees of G, except in the case where q = 9 and G = S〈δϕ〉 ∼= M10 with |G : S| = 2.

Proof. Let q = 32, so that S ∼= PSL2(9) ∼= A6. Either G = S〈δϕ〉 ∼= M10 or G = AutS. If
|G : S| = 2, so that G ∼= M10, then the Atlas [4] character table shows that cd(G) = {1, 9, 10, 16},
and so no prime divides three degrees of G, as claimed. However, if G = AutS, it is not difficult
to determine that cd(G) = {1, 9, 10, 16, 20} and G has three distinct even degrees. We may now
assume q > 32.

By Lemma 4.2, the inertia group of µ1 in G is IG(µ1) = G ∩ S〈ϕ〉, which is of index 2 in G.
As IG(µ1)/S is cyclic, µ1 extends to an irreducible character µ̃1 of IG(µ1), and then µ̃G

1 is an
irreducible character of G of degree |G : IG(µ1)|µ1(1) = 2(q + ǫ)/2 = q + ǫ. By Lemma 4.5, G
also has characters of degrees (q + 1)|G : G ∩ PGL2(q)| and (q − 1)|G : G ∩ PGL2(q)|. These three
degrees are even and, since |G : G ∩ PGL2(q)| > 1, they are distinct.
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4.3 Aut(PSL2(2
f))

We now consider the case S ∼= SL2(q) ∼= PSL2(q) ∼= PGL2(q), where q = 2f , f > 3. (The case q = 4
is finished, as PSL2(4) ∼= PSL2(5).) We have AutS = S〈ϕ〉 and |AutS : S| = f .

Lemma 4.10. Let S ∼= SL2(q), where q = 2f and f > 3. If S < G 6 AutS, then no prime divides
three degrees of G if and only if |G : S| = f = 3 or |G : S| is an odd prime that divides neither of
q − 1, q + 1.

Proof. Suppose first that |G : S| is even. By Lemma 4.5, G has degrees (q − 1)|G : S| and
(q + 1)|G : S|. The Steinberg character of S extends to a character of G of degree q, and so these
three degrees are even and distinct.

We may now assume |G : S| = m > 1 is odd. Suppose m is not prime, and let ℓ be a divisor
of m with 1 < ℓ < m. Let k be one of f/m, f/(m/ℓ), or f . In each case, f/k = |S〈ϕk〉 : S| divides
m = |G : S|, so that S 6 S〈ϕk〉 6 G. It also follows that f/k is odd and so 2k + 1 | 2f + 1. Let
j = (2f + 1)/(2k + 1), so that j < (2f + 1)/2, and so j 6 2f/2 = q/2. We therefore have that θj is
an irreducible character of S of degree q − 1.

Observe that 2f + 1 | (2k + 1)j, hence by Lemma 4.3, θj is invariant under ϕk and we have
S 6 S〈ϕk〉 6 I 6 G, where I is the stabilizer of θj in G. If S〈ϕk〉 < I, then I = S〈ϕt〉 for some
divisor t of k with 1 6 t < k. Hence θj is invariant under ϕt and, by Lemma 4.3, 2f + 1 | (2t − 1)j
or 2f + 1 | (2t + 1)j. This implies 2k + 1 divides 2t − 1 or 2t + 1. However, this contradicts k > t,
and so I = S〈ϕk〉.

Since I/S is cyclic, θj extends to an irreducible character θ̃j of I, and θ̃G
j is an irreducible

character of G of degree (q − 1)|G : I|. Recall that k = f/m, f/(m/ℓ), or f , and |I : S| = f/k.
Hence |G : I| = m/(f/k) is 1, ℓ, or m, respectively. Therefore, G has degrees q − 1, (q − 1)ℓ, and
(q − 1)m, which are distinct and divisible by a prime dividing q − 1.

Finally, suppose |G : S| = m is an odd prime. We have G = S〈ϕℓ〉, where ℓ = f/m. In
particular, G/S is cyclic of prime order, hence each irreducible character of S either extends to an
irreducible character of G, if invariant under ϕℓ, or induces to an irreducible character of G, if not
invariant under ϕℓ.

We have
cd(S) = {1, 2f − 1, 2f , 2f + 1}.

The characters of degree 1, 2f are the principal character and the Steinberg character, respectively,
which are both invariant under ϕ and so extend to G. By Lemma 4.5, we know that G has degrees
(2f − 1)m and (2f +1)m. Hence in order to determine cd(G), it remains only to determine if there
are characters of S of degree 2f − 1 or 2f + 1 invariant under ϕℓ.

The characters of degree 2f −1 are the characters θj , where 1 6 j 6 q/2 = 2f/2. Since f/ℓ = m
is odd, 2ℓ + 1 | 2f + 1. Let j = (2f + 1)/(2ℓ + 1), so that j < 2f/2 = q/2 as above and θj ∈ Irr(S).
Since 2f + 1 | (2ℓ + 1)j, θj is invariant under ϕℓ by Lemma 4.3 and θj extends to an irreducible
character of G degree 2f − 1.

The characters of degree 2f +1 are the characters χi, where 1 6 i 6 (q/2)− 1 = (2f − 2)/2. By
Lemma 4.3, χi is invariant under ϕℓ if and only if 2f − 1 | (2ℓ − 1)i or 2f − 1 | (2ℓ + 1)i.

If f = m is an odd prime, so that ℓ = 1 and G = S〈ϕ〉, then 2ℓ − 1 = 1 and 2ℓ + 1 = 3. Since f
is odd, 3 ∤ 2f − 1, and so χi is invariant in G if and only if 2f − 1 | i. Since 1 6 i 6 (2f/2)− 1, this
is not possible, and so no character of S of degree 2f + 1 is invariant in G. Hence if f = m is an
odd prime, we have

cd(G) = {1, 2f − 1, 2f , (2f − 1)f, (2f + 1)f}.
By Fermat’s theorem, since f is an odd prime, 2f ≡ 2 (mod f), and so 2f − 1 ≡ 1 (mod f).
Therefore, f ∤ 2f − 1 and no prime divides three degrees of G in this case. If f > 3, then f ∤ 2f + 1,
and so we also have that f divides neither of q − 1, q + 1.
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If m is an odd prime with m < f , so that ℓ > 1, let i = (2f − 1)/(2ℓ − 1). Since ℓ > 2, we have
i < (2f − 1)/2, hence i 6 (2f − 2)/2 = (q/2) − 1 and χi ∈ Irr(S). We have 2f − 1 | (2ℓ − 1)i, and
so χi is invariant under ϕℓ. Therefore χi extends to a character of G of degree 2f + 1. Hence if m
is an odd prime with m < f , we have

cd(G) = {1, 2f − 1, 2f , 2f + 1, (2f − 1)m, (2f + 1)m},

and so there is a prime dividing three degrees of G if and only if m | 2f − 1 or m | 2f + 1.

This completes the proof of Theorem 1.
We observe that it is possible for an odd prime divisor m of f to also divide either 2f − 1 or

2f + 1, and thus divide three degrees of G when S < G < AutS and |G : S| = m. In particular,
let ℓ > 1 be an integer and m any prime divisor of either 2ℓ − 1 or 2ℓ + 1. If f = mℓ, then since
2m ≡ 2 (mod m), we have 2f ≡ 2ℓ (mod m), and so m is a divisor of 2f − 1 or 2f + 1, respectively.

5 Nonsolvable Groups

5.1 Preliminary Results

We now shift to general nonsolvable groups. We first consider nonabelian minimal normal subgroups
of a group where no prime divides three character degrees.

Lemma 5.1. Let G be a group where no prime divides three character degrees. If N is a nonabelian
minimal normal subgroup of G, then N is simple.

Proof. There exists a nonabelian simple group S so that N = S1 × · · · × St, where t is a positive
integer and Si

∼= S for i = 1, . . . , t. We know that G acts transitively on {S1, . . . , St}. We assume
that t > 1, and work for a contradiction.

We know from [2] that there exists σ ∈ Irr(S) so that σ extends to Aut(S) with σ(1) > 4.
Let γ∗ = σ × · · · × σ ∈ Irr(N). By [2], γ∗ extends to G, and so, γ∗(1) = σ(1)t ∈ cd(G). Let
τ1 = σ × 1 × · · · × 1 ∈ Irr(N). The stabilizer of τ1 in G will be the same as the normalizer of S1.
Now, τ1 will extend to its stabilizer. It follows that τ1(1)t = σ(1)t ∈ cd(G). It is easy to see that
t < σ(1)t−1, so σ(1)t < σ(1)t.

We can find δ ∈ Irr(S) so that δ(1) is not 1 and is relatively prime to σ(1) (see [2]). Let
τ2 = σ × δ × 1 × · · · × 1 ∈ Irr(N). The stabilizer of τ2 will be contained in the stabilizer of τ1. It
follows that cd(G) contains a degree a that is divisible by σ(1)δ(1)t, and that a is neither σ(1)t nor
σ(1)t. Let p be a prime divisor of σ(1). We see that σ(1)t, σ(1)t, and a are three degrees in cd(G)
that are divisible by p, a contradiction. We conclude that t = 1.

We now show that the centralizer of such a minimal normal subgroup will be central in G.

Lemma 5.2. Let N be a normal subgroup of G such that N is nonabelian simple group. If no
prime divides three degrees in cd(G), then CG(N) is central in G.

Proof. Let C = CG(N) and denote M = N × C. Observe that M is normal in G. Also, G/C
is isomorphic to a subgroup of Aut(N), and G/M is isomorphic to a subgroup of Out(N). In
particular, G/C is almost simple. By Theorem 1, we know that N ∼= PSL2(q) and either G = M
or |G : M | is prime.

Fix σ, ν ∈ Irr(N) with σ(1) = q and ν(1) = q − 1. Consider τ ∈ Irr(C) with stabilizer T in G.
Note that either T = G or T = M . Observe that 1N × τ and σ × τ both have stabilizer T in G.
Also, ν×τ has stabilizer S where M 6 S 6 T . Note that either |G : T | = |G : S| or |G : T | = 1 and
|G : S| = |G : M |. In either case, we have |G : S|ν(1) 6= |G : T |σ(1) since q − 1 does not divide q.

Applying Clifford’s theorem, |G : T |τ(1), |G : S|ν(1)τ(1), and |G : T |σ(1)τ(1) all lie in cd(G).
If τ(1) > 1, then this yields three degrees divisible by any prime divisor of τ(1). Thus, every
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character in Irr(C) is linear, and C is abelian. If |G : T | > 1, then |G : S| = |G : T |, and the three
degrees are |G : T |, |G : T |ν(1), |G : T |σ(1). We now have three degrees divisible by the prime
divisors of |G : T |. We deduce that every irreducible character of C is G-invariant. Since also every
irreducible character of C is linear, we conclude that C is central in G.

We can apply these two results to show that nonabelian chief factors are simple, and that G
has at most one such nonabelian simple factor in its derived series.

Corollary 5.3. Suppose M < N are normal subgroups of G, so that N/M is a nonabelian chief
factor for G. If no prime divides three degrees in cd(G), then N/M is simple, G/N is abelian, and
M is solvable.

Proof. Observe that G/M is nonsolvable, no prime divides three degrees in cd(G/M), and N/M is
a minimal normal subgroup of G/M . The fact that N/M is simple comes from Lemma 5.1. The
fact that G/N is abelian follows from Theorem 1.

We work to show that M is solvable. If M is not solvable, then we can find L < K 6 M so
that L and K are normal in G and K/L is a nonabelian chief factor for G. By Lemma 5.1, K/L is
a simple group. Let C/L = CG/L(K/L). We know that G/CK is abelian, and so C/L ∼= CK/K
is not solvable. This contradicts Lemma 5.2, which implies that C/L is central and hence abelian.
Therefore, M is solvable.

Corollary 5.4. If G is a nonsolvable group so that no prime divides three degrees in cd(G), then
there exist normal subgroups L < K in G so that K/L is simple, L is solvable, G/K is abelian,
and G/L 6 Aut(K/L), so G/L is almost simple.

Proof. Let L be maximal among normal subgroups of G so that G/L is not solvable. Let K
be normal in G so that K/L is a chief factor for G. Since G/K is solvable, we conclude that
K/L is nonabelian. By Lemma 5.3, K/L is simple, G/K is abelian, and L is solvable. Let
C/L = CG/L(K/L). By Lemma 5.2, C/L is abelian, which implies that C is solvable. Hence,
C = L, and so, G/L 6 Aut(K/L).

5.2 Almost Simple Sections

The previous result shows that if G is a nonsolvable group and no prime divides three degrees of G,
then G has a normal subgroup L so that G/L is an almost simple group with no prime dividing
three degrees. We now use the classification of these groups in Theorem 1. With this in mind, we
make the following hypothesis.

Hypothesis (*). No prime divides three degrees in cd(G); L < K are normal subgroups of G so
that K/L ∼= PSL2(q) and G/L 6 Aut(K/L) (i.e., G/L is almost simple). Fix τ ∈ Irr(L) and let T
be the stabilizer of τ in G.

Throughout, we will make use of Dickson’s list of the subgroups of PSL2(q), which can be found
as Hauptsatz II.8.27 of [6]. We also use the fact that the Schur multiplier of PSL2(q) is trivial unless
q = 4 or q is odd, in which case it is of order 2 if q 6= 9 and of order 6 if q = 9. We frequently use
Clifford’s theorem, which can be found as Theorem 6.11 of [8], and Gallagher’s theorem, which is
Corollary 6.17 of [8]. If H is a subgroup of G and τ ∈ Irr(H), we denote by Irr(G | τ) the set of
irreducible characters of G lying over τ and define cd(G | τ) = {χ(1) | χ ∈ Irr(G | τ)}.

We begin with the following simple observation.

Lemma 5.5. Assume Hypothesis (*). If T < G, then |cd(G | τ)| = |cd(T | τ)| 6 2.

Proof. The conclusion follows from the fact that |G : T | divides every degree in cd(G | τ) and the
observation from Clifford theory that |cd(G | τ)| = |cd(T | τ)|.
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We next show that τ is not K-invariant when T < G.

Lemma 5.6. Assume Hypothesis (*). If T < G, then K * T .

Proof. Suppose K ⊆ T , so that τ is K-invariant. If τ extends to K, then either |cd(T | τ)| = 4 if q
is even or q = 5, or |cd(T | τ)| = 5 if q > 7 is odd, and this violates Lemma 5.5. Thus, we may
assume that τ does not extend to K. This implies that K/L has a nontrivial Schur multiplier, and
so either q = 4 or q is odd. As long as q 6= 9 or q = 9 and τ corresponds to the character of order 2,
we see that |cd(T | τ)| = 3, a contradiction of Lemma 5.5. If q = 9 and τ corresponds to a character
of order 3, we deduce that |cd(T | τ)| = 4, again contradicting Lemma 5.5. The final possibility is
that q = 9 and τ corresponds to a character of order 6. In this case, cd(T | τ) = {6τ(1), 12τ(1)},
and so cd(G | τ) = {12τ(1), 24τ(1)}. Since 10, 16 ∈ cd(G/L), this yields a contradiction.

Next, we consider possibilities for the stabilizer in K (modulo L). First, we show that this
cannot be A5.

Lemma 5.7. Assume Hypothesis (*). If q > 7, then (T ∩K)/L is not A5.

Proof. Suppose that (T ∩ K)/L is A5. Since q > 5, we know that |K : T ∩ K| > 1, and so
|G : T | > 1. If τ extends to T ∩K, then we have 3τ(1), 4τ(1), 5τ(1) ∈ cd(T ∩K | τ). Notice that
|T : T ∩ K| divides |G : K|, which, by Theorem 1, divides a prime. Thus we get three distinct
degrees in cd(T | τ), contradicting Lemma 5.5.

If τ does not extend to T ∩K, then 4τ(1), 6τ(1) ∈ cd(T ∩K | τ). Since |T : T ∩K| divides a
prime, we get two distinct degrees a, b ∈ cd(T | τ) that are bigger than 1. This yields a|G : T | and
b|G : T | are in cd(G | τ). Since |(T ∩K)/L| = |A5| = 60 and q is a power of prime p with q > 5,
we conclude that p divides |K : T ∩K|, and so p divides |G : T |. Also, we know that |G : T | > q
unless q = 11, by Dickson’s classification. It follows that a|G : T | and b|G : T | are greater than q,
and so q, a|G : T |, and b|G : T | will be distinct degrees in cd(G) divisible by p, a contradiction.

We also show that the stabilizer in K (modulo L) cannot be PSL2(r) or PGL2(r), where r
properly divides q.

Lemma 5.8. Assume Hypothesis (*). Then (T ∩ K)/L is neither PSL2(r) nor PGL2(r), where
r > 3 is a proper divisor of q.

Proof. Suppose that (T ∩K)/L is PSL2(r) or PGL2(r) with r > 3. If r = 4 or 5, then (T ∩K)/L
is A5, and we are done by Lemma 5.7. Thus, we may assume r > 5. Let p be the prime dividing q
and r. Observe that |K : T ∩K| is divisible by p but is not a power of p. It follows that |G : T | is
divisible by p but is not a power of p.

Assume one of the following conditions: (1) τ extends to T ∩K, (2) τ does not extend to T ∩K
and r 6= 9, or (3) τ does not extend to T ∩K, r = 9, and τ corresponds to the character of order 2.
We have that τ(1)(r − 1), τ(1)(r + 1) ∈ cd(T ∩ K | τ). Since |T : T ∩ K| divides a prime, we
get distinct degrees a, b ∈ cd(T | τ) that are greater than 1, and so a|G : T | and b|G : T | are in
cd(G | τ). Along with q, these are three degrees in cd(G) that are divisible by p.

Now, suppose τ does not extend to T ∩ K and r = 9. Suppose first that τ corresponds to a
character of order 3. Notice that this implies (T ∩K)/L ∼= PSL2(9). It follows that

cd(T ∩K | τ) = {3τ(1), 6τ(1), 9τ(1), 15τ(1)}.

Since |T : T ∩K| divides a prime, this gives at least three degrees in cd(T | τ), violating Lemma 5.5.
Finally, suppose τ corresponds to a character of order 6. Again, (T ∩ K)/L ∼= PSL2(9). By

Lemma 5.6, T ∩ K 6= K, so we have q = 3f where f > 2. Hence, |T : T ∩ K| is odd. We have
cd(T ∩K | τ) = {6τ(1), 12τ(1)}. This implies |cd(T | τ)| = 2, and we get three degrees in cd(G)
divisible by p = 3.
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5.3 When q is Odd

In this section, we consider the case where PSL2(q) is involved in G and q is odd. We begin by
showing that the characters of L are G-invariant. This contains the work common to all cases.

Lemma 5.9. Assume Hypothesis (*). If q > 7 is odd, then T = G.

Proof. We begin by noting that cd(G/L) must have two even degrees:

1. q − 1, q + 1 if G/L is either PSL2(q) or PGL2(q),

2. 10, 16 if G/L ∼= S6 or M10 (with q = 9),

3. (3f − 1)f, (3f + 1)f if G/L ∼= PSL2(3
f ) ⋊ Zf , where f 6= 3 is an odd prime (with q = 3f ).

We suppose that T < G. By Lemma 5.6, we know that T ∩ K < K. Also, we know that
|T : T ∩ K| divides a prime, so T/(T ∩ K) is cyclic. By Lemmas 5.7 and 5.8, we know that
(T ∩K)/L is not A5, PSL2(r), or PGL2(r), where r divides q. From Dickson’s list of subgroups, it
follows that (T ∩K)/L, and hence T/L, is solvable.

If |G : T | is even, then all degrees in cd(G | τ) are even, and so cd(G | τ) ⊆ cd(G/L). By
Dickson’s list of subgroups, we know that either |T : T ∩K| > q + 1 and (T ∩K)/L is a Frobenius
group, or else |T : T ∩K| = q with q = 5, 7, 11, or |T : T ∩K| = 6 and q = 9. Since |T : T ∩K|
must divide the degrees in cd(G | τ), we obtain |T : T ∩K| = q+ 1, and |cd(G | τ)| = 1 since in no
case does q + 1 divide both even degrees.

There is a normal subgroup A in T ∩ K with |T ∩ K : A| = (q − 1)/2 and A/L elementary
abelian of order q. If τ does not extend to A, then there exists b ∈ cd(G | τ) such that p divides b,
where p is the prime dividing q. However, none of the even degrees in cd(G) is divisible by p, so
this is a contradiction.

Thus, τ extends to A. Note that A/L is the Sylow p-subgroup of (T ∩K)/L. If R/L is a Sylow
subgroup of (T ∩ K)/L for some prime other than p, then R/L is cyclic, and τ extends to R by
Corollary 11.22 of [8]. It follows that τ extends to T ∩ K by Corollary 11.31 of [8]. In light of
Gallagher’s theorem and the fact that |cd(T | τ)| = 1, we conclude that T/L is abelian, but this is
also a contradiction since (T ∩K)/L is not abelian.

We now suppose that |G : T | is odd. In particular, T/L contains a full Sylow 2-subgroup of
G/L. By Dickson’s list, we know that |G : T | = |K : T ∩ K| > q, and so any even degree in
cd(G | τ) will be larger than q+1, thus cd(G | τ) has no even degrees. It follows that cd(T | τ) has
no even degrees. By Theorem 12.9 of [13], this implies that T/L has an abelian Sylow 2-subgroup,
and so G/L has an abelian Sylow 2-subgroup.

It follows that G/L ∼= PSL2(q) and T/L is either a Klein 4-group or T/L ∼= A4. This follows
from the fact that PGL2(q) has a nonabelian Sylow 2-subgroup, and PSL2(q) has a nonabelian
Sylow 2-subgroup if 8 divides |PSL2(q)|. Since cd(T | τ) has no even degrees, τ must extend to the
Sylow 2-subgroup of T/L. Also, τ will extend to the Sylow 3-subgroup of T/L since it is cyclic.
By Corollary 11.22 of [8], τ extends to T . Notice that either T/L is a Klein 4-group and |G : T | is
the odd part of (q− 1)q(q+ 1)/2, or T/L ∼= A4 and |G : T | is the odd part of (q− 1)q(q+ 1)/6 and
3 ∈ cd(T | τ). In any case, cd(G | τ) has a degree a that is the odd part of (q− 1)q(q+ 1)/2. Since
q > 7, we see that a > q + 1. In this case, we know that (q + ǫ)/2 ∈ cd(G/L), where ǫ ∈ {±1} is
such that (q + ǫ)/2 is odd. Now any prime divisor of (q + ǫ)/2 will divide three degrees in cd(G),
a contradiction.

We now consider the case where K/L ∼= PSL2(q) and G/L is isomorphic to a subgroup of
Aut PSL2(q), with q > 7 odd. The case where q = 5 will be considered in the next section since
PSL2(5) ∼= PSL2(4).
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Theorem 5.10. Let G be a nonsolvable group such that no prime divides three degrees in cd(G) and
the nonabelian chief factor of G is isomorphic to PSL2(q), where q > 7 is odd. If L < K are normal
subgroups such that K/L ∼= PSL2(q) and G/L 6 Aut(K/L), then L = Z(G) and cd(G) = cd(G/L).

Proof. Fix subgroups L < K so that K/L ∼= PSL2(q), q > 7 odd. By Theorem 1, G/L is isomorphic
to one of PSL2(q), PGL2(q), PSL2(3

f ) ⋊ Zf for some prime f > 3, or (if q = 32) S6 or M10. As in
the proof of Lemma 5.9, observe that there are two even degrees e1, e2 in cd(G/L), hence in cd(G),
and so these must be the only even degrees of G.

Consider τ ∈ Irr(L). We know by Lemma 5.9 that τ is G-invariant. If τ extends to G, then
using Gallagher’s theorem, we obtain τ(1)e1, τ(1)e2 ∈ cd(G). Since these are even, we conclude
that τ(1) = 1 and cd(G | τ) = cd(G/L).

We now assume τ ∈ Irr(L) does not extend to G.

Case 1: G/L ∼= PSL2(q) or G/L ∼= PGL2(q).
Note that q − 1 and q + 1 are the only even degrees in cd(G). If q 6= 9 so that the Schur

multiplier of G/L is of order 2, or q = 9 and τ corresponds to a character of order 2, we obtain
(q − 1)τ(1), (q + 1)τ(1) ∈ cd(G | τ). Since these are even, we determine that τ(1) = 1. Also, if
G/L ∼= PGL2(q), we have that cd(G | τ) ⊆ cd(G/L). If G/L ∼= PSL2(q), then since SL2(q) is the
representation group, we obtain (q− ǫ)/2 ∈ cd(G | τ), where ǫ ∈ {±1} is such that (q+ ǫ)/2 is odd.
Now, (q − ǫ)/2 is a third even degree, so this cannot occur.

If q = 9 and τ corresponds to a character of order 3, then

cd(G | τ) = {3τ(1), 6τ(1), 9τ(1), 15τ(1)}.

We have four degrees divisible by 3, a contradiction. If τ corresponds to a character of order 6,
then cd(G | τ) = {6τ(1), 12τ(1)}. In this case, the even degrees in cd(G/L) are 8 and 10, so we get
a contradiction.

Case 2: G/L ∼= PSL2(3
f ) ⋊ Zf , where f > 3 is prime.

We begin by observing that

{(3f − 1)/2, 3f , (3f − 1)f, (3f + 1)f} ⊆ cd(G/L) ⊆ cd(G)

and (3f − 1)f and (3f + 1)f are the only even degrees in cd(G).
If τ extends to K, then by Gallagher’s theorem, τ has a unique extension τ̂ ∈ Irr(K). It follows

that τ̂ is also G-invariant, and since G/K is cyclic, we see that τ̂ , and hence τ , extends to G, and
we are done as above.

If τ does not extend to K, we obtain two characters of degree τ(1)(3f + 1)/2 in Irr(K | τ).
Since f is an odd prime, each of these two characters must be G-invariant, and hence they extend
to G. This yields τ(1)(3f + 1)/2 ∈ cd(G | τ). As this degree must be (3f − 1)f or (3f + 1)f , we
deduce that τ(1) = 2f . Also, Irr(K | τ) contains characters of degree τ(1)(3f + 1), so cd(G | τ)
will contain a degree divisible by

τ(1)(3f + 1) = (3f + 1)2f > (3f + 1)f,

a third even degree. Thus, this case cannot occur.

Case 3: G/L ∼= S6 or G/L ∼= M10.
Observe that 10, 16 ∈ cd(G/L) ⊆ cd(G) are the only even degrees in cd(G). Using the Atlas [4],

we obtain τ(1)20 ∈ cd(G | τ), a third even degree. Thus, this case cannot occur.

For each possibility for G/L, we have shown that for all τ ∈ cd(L), τ is linear and G-invariant,
and cd(G | τ) ⊆ cd(G/L). We conclude that L = Z(G) and cd(G) = cd(G/L), as claimed.
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5.4 When q is Even

Now, we consider the possibility that the associated simple factor has even characteristic. We start
with the case where K/L ∼= SL2(2

f ) and K/L is properly contained in G/L.

Lemma 5.11. Assume Hypothesis (*). If q > 4 is even and K < G, then T = G.

Proof. By Theorem 1, G/L ∼= SL2(2
f )⋊Zr, where either r is an odd prime divisor of f or r = f = 2.

We will assume T < G and reach a contradiction in each case. Recall that by Lemma 5.6, we know
that K * T and so T ∩K < K.

We first suppose r = f = 2, so that K/L ∼= SL2(4) ∼= A5 and G/L ∼= S5. We have

cd(G/L) = {1, 4, 5, 6} ⊆ cd(G),

hence 4 and 6 are the only even degrees of G. Thus if |G : T | is even, then it must divide one of 4
or 6. But S5 contains no subgroup of index 4 and since T 6= K the index is not 2. If |G : T | = 6,
then cd(T | τ) = {1}, and so τ extends to T and T/L is an abelian subgroup of S5 of index 6, a
contradiction.

Thus, |G : T | is odd. It follows that |G : T | = |K : T ∩K|. The only proper subgroups of A5

with odd index have index 5 or 15. Thus |G : T | is 5 or 15, and so all degrees in cd(G | τ) are
divisible by 5. We conclude that no degree in cd(G | τ) can be even, and so no degree in cd(T | τ)
is even, which implies that T/L has an abelian Sylow 2-subgroup, a contradiction.

We now consider the case where G/L ∼= SL2(2
f )⋊Zr and r is an odd prime divisor of f . Since f

is divisible by an odd prime, we see that 2f > 8, so we may apply Lemma 5.7 to determine that
(T ∩ K)/L is not A5. By Lemma 5.8, we know that (T ∩ K)/L is not SL2(2

e) with e properly
dividing f .

Suppose first that r < f , so that by Theorem 1, r divides neither 2f − 1 nor 2f + 1. In this
case, we know that

cd(G/L) = {1, 2f − 1, 2f , 2f + 1, (2f − 1)r, (2f + 1)r}.

We also know that |G : T | > |K : T ∩K| > 2f + 1 by Dickson’s list. If |K : T ∩K| > 2f + 1, then
|K : T ∩ K|, and hence |G : T |, is not in cd(G/L). On the other hand, |K : T ∩ K| will have a
common prime divisor with either 2f − 1 or 2f + 1. If c ∈ cd(T | τ), then we have either c, 2f − 1,
(2f − 1)r or c, 2f + 1, (2f + 1)r are distinct degrees divisible by a common prime. We conclude
that |K : T ∩K| = 2f + 1.

We now assume |K : T ∩ K| = 2f + 1. It follows that (T ∩ K)/L is a Frobenius group. Let
M/L be the Frobenius kernel of (T ∩K)/L. It follows that |T ∩K : M | = 2f − 1 and |M : L| = 2f .
If τ does not extend to M , then there exists b ∈ cd(G | τ) so that 2 divides b. We also have 2f + 1
dividing b, so 2f +1, (2f +1)r, and b are all degrees in cd(G) with a common prime divisor. Hence τ
extends to M . Notice that all the remaining Sylow subgroups of (T ∩K)/L must be cyclic, so τ will
extend to T ∩K. This implies that (2f − 1)τ(1) ∈ cd(K ∩ T | τ). Hence, there exists a ∈ cd(G | τ)
such that (2f − 1)(2f + 1) divides a, and a, 2f − 1, (2f − 1)r are degrees in cd(G) with a common
prime divisor. We conclude that T = G in this case.

Finally, suppose r = f is an odd prime. In this case, we know that

cd(G/L) = {1, 2f − 1, 2f , (2f − 1)f, (2f + 1)f}.

If (2f −1, |G : T |) > 1, then cd(G | τ) ⊆ {2f −1, (2f −1)f}. It follows that |G : T | divides (2f −1)f .
We know that |K : T ∩K| > 2f + 1 by Dickson’s list, and |K : T ∩K| divides |G : T |. We deduce
that f divides |K : T ∩K|. The only case when f divides |K : L| = |SL2(2

f )| is f = 3. We now
have (2f − 1)f = 21, but SL2(8) has no proper subgroup of index dividing 21. We conclude that
|G : T | is relatively prime to (2f − 1).
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Suppose that f divides |G : T |. This would imply that cd(G | τ) ⊆ {(2f − 1)f, (2f + 1)f}.
As |G : T | is relatively prime to 2f − 1, we conclude that |G : T | divides (2f + 1)f . Observe that
either |K : T ∩K| divides 2f + 1 or f = 3 and (2f + 1)f = 27. Since |K : T ∩K| > 2f + 1 and 27
does not divide |SL2(8)|, we conclude that |K : T ∩K| = 2f + 1. By Dickson’s list, this implies
that (T ∩ K)/L is a Frobenius group. It follows that either |G : T | = (2f + 1)f or f = 3 and
|G : T | = |K : T ∩K| = 9. Notice that if |G : T | = (2f + 1)f , then cd(G | τ) = {(2f + 1)f} and
cd(T | τ) = {1}. Hence, τ has only extensions to T , and so T/L is abelian, which is a contradiction
since (T ∩K)/L is a Frobenius group.

If f = 3 and |K : T ∩K| = |G : T | = 9, then we have cd(T | τ) = {3}. Let A/L be the Frobenius
kernel of (T ∩K)/L, and note that A/L is the Sylow 2-subgroup of (T ∩K)/L. Since 2 divides no
degree in cd(T | τ), it follows that τ extends to A, and since the remaining Sylow subgroups are
cyclic, τ will extend to T (see Corollaries 11.31 and 11.22 of [8]). This would imply by Gallagher’s
theorem that T/L is abelian, a contradiction. We conclude that f does not divide |G : T |.

We now have |G : T | = |K : T ∩K| dividing 2f (2f +1). This implies that |T ∩K : L| is divisible
by 2f − 1. The possibilities for (T ∩K)/L are a cyclic group of order 2f − 1, a dihedral group of
order 2(2f − 1), and a Frobenius group of order 2f (2f − 1). Working with 2 × 2 matrices and the
field automorphism, one can deduce that T/L is either a Frobenius group of order (2f − 1)f or
2(2f − 1)f , or an affine semi-linear group of order 2f (2f − 1)f . (The affine semi-linear groups are
defined in Section 2 of [13].)

If T/L is a Frobenius group, then all Sylow subgroups are cyclic, so τ will extend to T (see
Corollaries 11.31 and 11.22 of [8]). It follows that cd(T | τ) = {aτ(1) | a ∈ cd(T/L)} by Gallagher’s
theorem. If |T/L| = (2f − 1)f , then cd(T | τ) = {τ(1), fτ(1)} and as |G : T | = 2f (2f + 1), we
obtain

cd(G | τ) = {2f (2f + 1)τ(1), 2f (2f + 1)fτ(1)}.
If |T/L| = 2(2f − 1)f , then cd(T | τ) = {τ(1), 2fτ(1)} and as |G : T | = 2f−1(2f + 1), we obtain

cd(G | τ) = {2f−1(2f + 1)τ(1), 2f (2f + 1)fτ(1)}.

In both cases, we obtain a contradiction by noticing that each of 2, f , and 2f + 1 divides three
degrees in cd(G).

Suppose T/L is an affine semi-linear group of order 2f (2f−1)f . Let A/L be the normal subgroup
of order 2f , and let B/L be a subgroup of order 2f − 1. Observe that A/L is irreducible under the
action of B/L, so A/L will be a chief factor of T . By Problem 6.12 of [8], either τ extends to A
or τ is fully ramified with respect to A/L. Since f is odd, τ cannot be fully ramified, so τ extends
to A. Since the other Sylow subgroups of T/L are cyclic, τ will extend to T (again, see Corollaries
11.31 and 11.22 of [8]). In Example 19.14 (c) of [7], it is shown that cd(T/L) = {1, 2f − 1, f}. We
use Gallagher’s theorem to see that |cd(T | τ)| = 3, contradicting Lemma 5.5, and we conclude
that T = G.

Note that since PGL2(5) ∼= S5, the following theorem includes one of the q = 5 cases not
considered in Theorem 5.10.

Theorem 5.12. Suppose that no prime divides three degrees in cd(G) and G has normal subgroups
L < K so that K/L ∼= SL2(2

f ). If K < G, then L = Z(G) and cd(G) = cd(G/L).

Proof. By Theorem 1, G/L ∼= SL2(2
f )⋊Zr, where either r is an odd prime divisor of f or r = f = 2.

Let τ ∈ Irr(L), so that by Lemma 5.11, τ is G-invariant.
We first suppose r = f = 2, so that G/L ∼= S5 and we have cd(G/L) = {1, 4, 5, 6} ⊆ cd(G).

The only possible even degrees in cd(G | τ) are 4 and 6. Since τ is G-invariant, we may use the
Atlas [4] to see that either cd(G | τ) = {τ(1), 4τ(1), 5τ(1), 6τ(1)} or cd(G | τ) = {4τ(1), 6τ(1)}.
Hence, we have 4τ(1) ∈ cd(G) in any case, and so τ(1) = 1. This implies cd(G | τ) ⊆ {1, 4, 5, 6},
and so cd(G | τ) ⊆ cd(G/L).
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We now consider the case where G/L ∼= SL2(2
f ) ⋊Zr and r is an odd prime divisor of f . Since

the Schur multiplier for SL2(2
f ) is trivial, we see that τ extends to K, and since K/L is simple,

this extension is unique, so it is G-invariant. Since G/K is cyclic, we conclude that τ extends to G.
In any case, 1, 2f − 1, and (2f − 1)r are in cd(G/L), and so τ(1), τ(1)(2f − 1), and τ(1)(2f − 1)r
are in cd(G). Thus, τ(1) = 1 and cd(G | τ) = cd(G/L).

We have shown that every irreducible character τ of L is G-invariant and linear, and that
cd(G | τ) ⊆ cd(G/L). It follows that L = Z(G) and cd(G) = cd(G/L).

The remaining case to consider is G/L ∼= SL2(2
f ) where f > 2. Since SL2(4) ∼= PSL2(5), this

includes the remaining q = 5 case not considered in Theorem 5.10. We first prove some preliminary
lemmas.

Lemma 5.13. Suppose no prime divides three degrees in cd(G) and L is normal in G so that
G/L ∼= SL2(2

f ) with f > 2. Consider τ ∈ Irr(L), and let T be the stabilizer of τ in G. If T < G,
then |G : T | > 2f + 1. Moreover, we have:

1. If |G : T | > 2f + 1, then cd(G | τ) = {a}, where a > 2f + 1 has common prime divisors with
at least two of 2f − 1, 2f , 2f + 1.

2. If |G : T | = 2f +1, then τ is linear, τ extends to T , and cd(G | τ) = {2f +1, (2f −1)(2f +1)}.

Proof. Since |G : T | > 1, it follows from Lemma 5.5 that |cd(G | τ)| 6 2. By Dickson’s list, we
know that |G : T | > 2f + 1.

Suppose first that |G : T | > 2f + 1. If a ∈ cd(G | τ), then a > |G : T | > 2f + 1. If p is any
prime divisor of |G : T |, then a is divisible by p and p divides one of 2f − 1, 2f , 2f + 1. Suppose we
have a, b ∈ cd(G | τ) with a < b. We know that p divides both a and b. Thus, p will divide three
degrees in cd(G), a contradiction. Hence, we conclude that cd(G | τ) = {a}. Since |G : T | divides
(2f − 1)2f (2f + 1) and is greater than 2f + 1, it must have common prime divisors with at least
two of the numbers 2f − 1, 2f , and 2f + 1, and hence a does also.

Suppose now |G : T | = 2f + 1. Using Clifford theory, we obtain 1 ∈ cd(T | τ). We conclude
that τ must extend to T . We know that T/L is a Frobenius group and cd(T/L) = {1, 2f − 1}. We
now apply Gallagher’s theorem to see that cd(T | τ) = {1, 2f − 1}. It follows that cd(G | τ) =
{2f + 1, (2f − 1)(2f + 1)}.

The next lemma is the key to our argument.

Lemma 5.14. Suppose no prime divides three degrees in cd(G) and L is normal in G so that
G/L ∼= SL2(2

f ) with f > 2. If µ, ν ∈ Irr(L) are both not G-invariant, then

{2f + 1} ∪ cd(G | µ) = {2f + 1} ∪ cd(G | ν).

Proof. We apply Lemma 5.13 to see that there exist a1, a2 so that

{2f + 1} ∪ cd(G | µ) = {2f + 1, a1} and {2f + 1} ∪ cd(G | ν) = {2f + 1, a2},

with ai > 2f + 1 for i = 1, 2. It suffices to show that a1 = a2. Thus, we assume that a1 6= a2.
Let T be the stabilizer of µ in G and S the stabilizer of ν in G. We know that |G : T | and |G : S|
divide |G : L| = (2f − 1)2f (2f + 1). Hence, if |G : T | and |G : S| have a common prime divisor p,
then p will divide one of the degrees 2f − 1, 2f , 2f + 1 of G, as well as the degrees a1 and a2, a
contradiction. Thus, |G : T | and |G : S| must be relatively prime. In particular, one of |G : T | or
|G : S| must be odd.

Without loss of generality, let |G : T | be odd. If |G : T | = (2f − 1)(2f + 1), then as |G : S|
is relatively prime to |G : T |, we conclude that |G : S| divides 2f , which contradicts the fact that
SL2(2

f ) has no proper subgroups of 2-power index. Thus, |G : T | < (2f −1)(2f +1). It follows that
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T/L is not abelian. Notice that T/L contains a full Sylow 2-subgroup of G/L. From Dickson’s list
of subgroups, this implies that either T/L is isomorphic to A5 or T/L is a Frobenius group whose
Frobenius kernel is the Sylow 2-subgroup of G/L contained in T/L (including possibly A4). Since
T < G, we know that if T/L ∼= A5, then f > 3, so 2f > 8. We may use Lemma 5.7 to see that T/L
is not isomorphic to A5.

Suppose that T/L is a Frobenius group. Let P/L be the Sylow 2-subgroup of T/L. We know
that cd(T/L) = {1, |T : P |}. If µ extends to P , then since the other Sylow subgroups of T/K are
cyclic, µ extends to T . By applying Gallagher’s theorem, we have that |T : P | divides some degree
in cd(T | µ). It follows that |G′ : P | = (2f − 1)(2f + 1) divides some degree in cd(G | µ), and hence
(2f − 1)(2f + 1) divides a1. This implies that a2, and hence |G : S|, must be relatively prime to
(2f − 1)(2f + 1). We conclude that |G : S| is a power of 2, a contradiction.

If µ does not extend to P , then 2 divides the degrees in cd(P | µ), and hence 2 divides the
degrees in cd(G | µ). In particular 2 divides a1. If 2 divides a2, then a1, a2, and 2f are three distinct
even degrees of G, and so we must have that a2 is odd. Hence, |G : S| is odd, and so |G : S| divides
(2f +1)(2f −1). Since |G : T | and |G : S| are coprime and both divide (2f +1)(2f −1), we conclude
that |G : T | · |G : S| divides (2f + 1)(2f − 1). On the other hand, the fact that |G : T | > 2f + 1 and
|G : S| > 2f + 1 implies that

|G : T | · |G : S| > (2f + 1)2 > (2f + 1)(2f − 1),

a contradiction. Hence a1 = a2 and the result follows.

Finally, we prove the desired result when G/L ∼= SL2(2
f ). We should note that if G is the

semi-direct product of SL2(2
f ) acting on its natural module, then

cd(G) = {1, 2f − 1, 2f , 2f + 1, (2f − 1)(2f + 1)}.

We do not know of any other examples where this occurs. In particular, we do not know of any
examples where a in the following theorem has a value other than (2f − 1)(2f + 1).

Theorem 5.15. If no prime divides three degrees in cd(G) and L is a normal subgroup of G so
that G/L ∼= SL2(2

f ) with f > 2, then cd(G) ⊆ {1, 2f − 1, 2f , 2f + 1, a}, where a > 2f + 1.

Proof. Recall that cd(G/L) = {1, 2f−1, 2f , 2f +1}. Suppose the character µ ∈ Irr(L) isG-invariant.
If µ extends to G, then

{µ(1), µ(1)(2f − 1), µ(1)2f , µ(1)(2f + 1)} ⊆ cd(G | µ).

This implies µ(1) = 1 and cd(G | µ) = {1, 2f − 1, 2f , 2f +1}. If µ does not extend to G, then f = 2
and G/L ∼= SL2(4) since the Schur multiplier of SL2(2

f ) is trivial for f > 2. By the Atlas [4], we
obtain

{2µ(1), 4µ(1), 6µ(1)} ⊆ cd(G | µ),

a contradiction. Thus, we have cd(G | µ) = {1, 2f − 1, 2f , 2f + 1} for every invariant character
µ ∈ Irr(L).

Suppose now that µ ∈ Irr(L) is not G-invariant. We apply Lemma 5.13 to see that

{2f + 1} ∪ cd(G | µ) = {2f + 1, a},

where a > 2f +1 and a has common prime divisors with at least two of the numbers 2f−1, 2f , 2f +1.
If ν is any other character in Irr(L) that is not G-invariant, then we apply Corollary 5.14 to see
that cd(G | ν) ⊆ {2f + 1, a}. It follows that cd(G) ⊆ {1, 2f − 1, 2f , 2f + 1, a}.
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5.5 Conclusions

We have shown that if G is a nonsolvable group where no prime divides three degrees of G, then G
has normal subgroups L < K such that K/L ∼= PSL2(q), for some prime power q > 4, and
G/L 6 AutK/L ∼= Aut PSL2(q). By Theorem 5.10 and Theorem 5.12, we have that if q > 5 is odd
or if q > 4 is even with K < G, then cd(G) = cd(G/L). Thus Table 1 shows that |cd(G)| 6 6 in
these cases. If q > 4 is even and K = G, so that G/L ∼= PSL2(q), then Theorem 5.15 shows that
cd(G) ⊆ cd(G/L) ∪ {a} for some a > q + 1. Hence |cd(G)| 6 5 in this case. Therefore, if G is any
nonsolvable group where no prime divides three degrees, then |cd(G)| 6 6. As Benjamin [1] had
shown this previously for solvable groups, Theorem 2 follows.

As noted previously, if Γ(G) contains no triangles, then no prime can divide three degrees of G,
and so Theorem 3 holds. However, there exist solvable groups for which no prime divides three
degrees and yet Γ(G) contains a triangle. Theorem 1 and the list of degree sets in Table 1 show
that if no prime divides three degrees of a nonsolvable group G, then Γ(G/L) contains no triangles.
Hence if q > 5 is odd or if q > 4 is even with K < G, it follows that Γ(G) contains no triangles.
If q > 4 is even and K = G, then cd(G) ⊆ {1, 2f − 1, 2f , 2f + 1, a} for some a > 2f + 1. Since
2f − 1, 2f , and 2f + 1 are pairwise coprime, Γ(G) also contains no triangles in this case, hence
Theorem 4 follows.
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