ALGEBRA QUALIFYING EXAM PROBLEMS
RING THEORY

Kent State University
Department of Mathematical Sciences

Compiled and Maintained
by
Donald L. White

Version: August 29, 2017
CONTENTS

RING THEORY

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Ring Theory</td>
<td>1</td>
</tr>
<tr>
<td>Prime, Maximal, and Primary Ideals</td>
<td>4</td>
</tr>
<tr>
<td>Commutative Rings</td>
<td>6</td>
</tr>
<tr>
<td>Domains</td>
<td>7</td>
</tr>
<tr>
<td>Polynomial Rings</td>
<td>9</td>
</tr>
<tr>
<td>Non-commutative Rings</td>
<td>10</td>
</tr>
<tr>
<td>Local Rings, Localization, Rings of Fractions</td>
<td>11</td>
</tr>
<tr>
<td>Chains and Chain Conditions</td>
<td>12</td>
</tr>
</tbody>
</table>
RING THEORY

General Ring Theory

1. Give an example of each of the following.
 (a) An irreducible polynomial of degree 3 in \(\mathbb{Z}_3[x] \).
 (b) A polynomial in \(\mathbb{Z}[x] \) that is not irreducible in \(\mathbb{Z}[x] \) but is irreducible in \(\mathbb{Q}[x] \).
 (c) A non-commutative ring of characteristic \(p \), \(p \) a prime.
 (d) A ring with exactly 6 invertible elements.
 (e) An infinite non-commutative ring with only finitely many ideals.
 (f) An infinite non-commutative ring with non-zero characteristic.
 (g) An integral domain which is not a unique factorization domain.
 (h) A unique factorization domain that is not a principal ideal domain.
 (i) A principal ideal domain that is not a Euclidean domain.
 (j) A Euclidean domain other than the ring of integers or a field.
 (k) A finite non-commutative ring.
 (l) A commutative ring with a sequence \(\{P_n\}_{n=1}^{\infty} \) of prime ideals such that \(P_n \) is properly contained in \(P_{n+1} \) for all \(n \).
 (m) A non-zero prime ideal of a commutative ring that is not a maximal ideal.
 (n) An irreducible element of a commutative ring that is not a prime element.
 (o) An irreducible element of an integral domain that is not a prime element.
 (p) A commutative ring that has exactly one maximal ideal and is not a field.
 (q) A non-commutative ring with exactly two maximal ideals.

2. (a) How many units does the ring \(\mathbb{Z}/60\mathbb{Z} \) have? Explain your answer.
 (b) How many ideals does the ring \(\mathbb{Z}/60\mathbb{Z} \) have? Explain your answer.

3. [NEW] How many ideals does the ring \(\mathbb{Z}/90\mathbb{Z} \) have? Explain your answer.

4. Denote the set of invertible elements of the ring \(\mathbb{Z}_n \) by \(U_n \).
 (a) List all the elements of \(U_{18} \).
 (b) Is \(U_{18} \) a cyclic group under multiplication? Justify your answer.

5. [NEW] Denote the set of invertible elements of the ring \(\mathbb{Z}_n \) by \(U_n \).
 (a) List all the elements of \(U_{24} \).
 (b) Is \(U_{24} \) a cyclic group under multiplication? Justify your answer.

6. [NEW] Find all positive integers \(n \) having the property that the group of units of \(\mathbb{Z}/n\mathbb{Z} \) is an elementary abelian 2-group.

7. Let \(U(R) \) denote the group of units of a ring \(R \). Prove that if \(m \) divides \(n \), then the natural ring homomorphism \(\mathbb{Z}_n \to \mathbb{Z}_m \) maps \(U(\mathbb{Z}_n) \) onto \(U(\mathbb{Z}_m) \).
 Give an example that shows that \(U(R) \) does not have to map onto \(U(S) \) under a surjective ring homomorphism \(R \to S \).
8. If p is a prime satisfying $p \equiv 1 \pmod{4}$, then p is a sum of two squares.

9. If (\cdot) denotes the Legendre symbol, prove Euler’s Criterion: if p is a prime and a is any integer relatively prime to p, then $a^{(p-1)/2} \equiv \left(\frac{a}{p} \right) \pmod{p}$.

10. Let R_1 and R_2 be commutative rings with identities and let $R = R_1 \times R_2$. Show that every ideal I of R is of the form $I = I_1 \times I_2$ with I_i an ideal of R_i for $i = 1, 2$.

11. Show that a non-zero ring R in which $x^2 = x$ for all $x \in R$ is of characteristic 2 and is commutative.

12. Let R be a finite commutative ring with more than one element and no zero-divisors. Show that R is a field.

13. Determine for which integers n the ring $\mathbb{Z}/n\mathbb{Z}$ is a direct sum of fields. Prove your answer.

14. Let R be a subring of a field F such that for each x in F either $x \in R$ or $x^{-1} \in R$. Prove that if I and J are two ideals of R, then either $I \subseteq J$ or $J \subseteq I$.

15. The Jacobson Radical $J(R)$ of a ring R is defined to be the intersection of all maximal ideals of R.
Let R be a commutative ring with 1 and let $x \in R$. Show that $x \in J(R)$ if and only if $1 - xy$ is a unit for all y in R.

16. Let R be any ring with identity, and n any positive integer. If $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R, prove that $M_n(I)$ is an ideal of $M_n(R)$ whenever I is an ideal of R, and that every ideal of $M_n(R)$ has this form.

17. Let m, n be positive integers such that m divides n. Then the natural map $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $a + (n) \mapsto a + (m)$ is a surjective ring homomorphism. If U_n, U_m are the units of \mathbb{Z}_n and \mathbb{Z}_m, respectively, show that $\varphi : U_n \to U_m$ is a surjective group homomorphism.

18. Let R be a ring with ideals A and B. Let $R/A \times R/B$ be the ring with coordinate-wise addition and multiplication. Show the following.
(a) The map $R \to R/A \times R/B$ given by $r \mapsto (r + A, r + B)$ is a ring homomorphism.
(b) The homomorphism in part (a) is surjective if and only if $A + B = R$.

19. Let m and n be relatively prime integers.
(a) Show that if c and d are any integers, then there is an integer x such that $x \equiv c \pmod{m}$ and $x \equiv d \pmod{n}$.
(b) Show that \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are isomorphic as rings.

20. Let R be a commutative ring with 1 and let I and J be ideals of R such that $I + J = R$. Show that $R/(I \cap J) \cong R/I \oplus R/J$.

21. [NEW] Let R be a commutative ring with identity and let I_1, I_2, \ldots, I_n be pairwise co-maximal ideals of R (i.e., $I_i + I_j = R$ if $i \neq j$). Show that $I_i + \bigcap_{j \neq i} I_j = R$ for all i.

22. Let R be a commutative ring, not necessarily with identity, and assume there is some fixed positive integer n such that $nx = 0$ for all $r \in R$. Prove that R embeds in a ring S with identity so that R is an ideal of S and $S/R \cong \mathbb{Z}/n\mathbb{Z}$.

2
23. Let \(R \) be a ring with identity 1 and \(a, b \in R \) such that \(ab = 1 \). Denote \(X = \{ x \in R \mid ax = 1 \} \).

Show the following.

(a) If \(x \in X \), then \(b + (1 - xa) \in X \).

(b) If \(\varphi : X \to X \) is the mapping given by \(\varphi(x) = b + (1 - xa) \), then \(\varphi \) is one-to-one.

(c) If \(X \) has more than one element, then \(X \) is an infinite set.

24. Let \(R \) be a commutative ring with identity and define \(U_2(R) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in R \right\} \).

Prove that every \(R \)-automorphism of \(U_2(R) \) is inner.

25. Let \(\mathbb{R} \) be the field of real numbers and let \(F \) be the set of all \(2 \times 2 \) matrices of the form \(\begin{bmatrix} a & b \\ -3b & a \end{bmatrix} \), where \(a, b \in \mathbb{R} \). Show that \(F \) is a field under the usual matrix operations.

26. Let \(R \) be the ring of all \(2 \times 2 \) matrices of the form \(\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \) where \(a \) and \(b \) are real numbers.

Prove that \(R \) is isomorphic to \(\mathbb{C} \), the field of complex numbers.

27. Let \(p \) be a prime and let \(R \) be the ring of all \(2 \times 2 \) matrices of the form \(\begin{bmatrix} a & b \\ pb & a \end{bmatrix} \), where \(a, b \in \mathbb{Z} \). Prove that \(R \) is isomorphic to \(\mathbb{Z}[\sqrt{p}] \).

28. Let \(p \) be a prime and \(F_p \) the set of all \(2 \times 2 \) matrices of the form \(\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \), where \(a, b \in \mathbb{Z}_p \).

(a) Show that \(F_p \) is a commutative ring with identity.

(b) Show that \(F_7 \) is a field.

(c) Show that \(F_{13} \) is not a field.

29. Let \(I \subseteq J \) be right ideals of a ring \(R \) such that \(J/I \cong R \) as right \(R \)-modules. Prove that there exists a right ideal \(K \) such that \(I \cap K = (0) \) and \(I + K = J \).

30. A ring \(R \) is called simple if \(R^2 \neq 0 \) and 0 and \(R \) are its only ideals. Show that the center of a simple ring is 0 or a field.

31. Give an example of a field \(F \) and a one-to-one ring homomorphism \(\varphi : F \to F \) which is not onto. Verify your example.

32. Let \(D \) be an integral domain and let \(D[x_1, x_2, \ldots, x_n] \) be the polynomial ring over \(D \) in the \(n \) indeterminates \(x_1, x_2, \ldots, x_n \). Let

\[
V = \begin{bmatrix}
x_1^{n-1} & \cdots & x_1^2 & x_1 & 1 \\
x_2^{n-1} & \cdots & x_2^2 & x_2 & 1 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
x_n^{n-1} & \cdots & x_n^2 & x_n & 1
\end{bmatrix}.
\]

Prove that the determinant of \(V \) is \(\prod_{1 \leq i < j \leq n} (x_i - x_j) \).
33. Let \(R = C[0,1] \) be the set of all continuous real-valued functions on \([0,1]\). Define addition and multiplication on \(R \) as follows. For \(f, g \in R \) and \(x \in [0,1] \),
\[
(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x).
\]

(a) Show that \(R \) with these operations is a commutative ring with identity.
(b) Find the units of \(R \).
(c) If \(f \in R \) and \(f^2 = f \), then \(f = 0_R \) or \(f = 1_R \).
(d) If \(n \) is a positive integer and \(f \in R \) is such that \(f^n = 0_R \), then \(f = 0_R \).

34. Let \(S \) be the ring of all bounded, continuous functions \(f : \mathbb{R} \to \mathbb{R} \), where \(\mathbb{R} \) is the set of real numbers. Let \(I \) be the set of functions \(f \) in \(S \) such that \(f(t) \to 0 \) as \(|t| \to \infty \).

(a) Show that \(I \) is an ideal of \(S \).
(b) Suppose \(x \in S \) is such that there is an \(i \in I \) with \(ix = x \). Show that \(x(t) = 0 \) for all sufficiently large \(|t| \).

35. Let \(\mathbb{Q} \) be the field of rational numbers and \(D = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \} \).

(a) Show that \(D \) is a subring of the field of real numbers.
(b) Show that \(D \) is a principal ideal domain.
(c) Show that \(\sqrt{3} \) is not an element of \(D \).

36. Show that if \(p \) is a prime such that \(p \equiv 1 \pmod{4} \), then \(x^2 + 1 \) is not irreducible in \(\mathbb{Z}_p[x] \).

37. Show that if \(p \) is a prime such that \(p \equiv 3 \pmod{4} \), then \(x^2 + 1 \) is irreducible in \(\mathbb{Z}_p[x] \).

38. Show that if \(p \) is a prime such that \(p \equiv 1 \pmod{6} \), then \(x^3 + 1 \) splits in \(\mathbb{Z}_p[x] \).

Prime, Maximal, and Primary Ideals

39. Let \(R \) be a non-zero commutative ring with 1. Show that an ideal \(M \) of \(R \) is maximal if and only if \(R/M \) is a field.

40. Let \(R \) be a commutative ring with 1. Show that an ideal \(P \) of \(R \) is prime if and only if \(R/P \) is an integral domain.

41. (a) Let \(R \) be a commutative ring with 1. Show that if \(M \) is a maximal ideal of \(R \) then \(M \) is a prime ideal of \(R \).
(b) Give an example of a non-zero prime ideal in a ring \(R \) that is not a maximal ideal.

42. Let \(R \) be a non-zero ring with identity. Show that every proper ideal of \(R \) is contained in a maximal ideal.

43. [NEW] Let \(M_1 \neq M_2 \) be two maximal ideals in the commutative ring \(R \) and let \(I = M_1 \cap M_2 \). Prove that \(R/I \) is isomorphic to the direct sum of two fields.

44. Let \(R \) be a non-zero commutative ring with 1. Show that if \(I \) is an ideal of \(R \) such that \(1 + a \) is a unit in \(R \) for all \(a \in I \), then \(I \) is contained in every maximal ideal of \(R \).
45. **[NEW]** Let R be a commutative ring with identity. Suppose R contains an idempotent element a other than 0 or 1. Show that every prime ideal in R contains an idempotent element other than 0 or 1. (An element $a \in R$ is idempotent if $a^2 = a$.)

46. Let R be a commutative ring with 1.
 (a) Prove that (x) is a prime ideal in $R[x]$ if and only if R is an integral domain.
 (b) Prove that (x) is a maximal ideal in $R[x]$ if and only if R is a field.

47. Find all values of a in \mathbb{Z}_3 such that the quotient ring

\[
\mathbb{Z}_3[x]/(x^3 + x^2 + ax + 1)
\]

is a field. Justify your answer.

48. Find all values of a in \mathbb{Z}_5 such that the quotient ring

\[
\mathbb{Z}_5[x]/(x^3 + 2x^2 + ax + 3)
\]

is a field. Justify your answer.

49. Let R be a commutative ring with identity and let U be maximal among non-finitely generated ideals of R. Prove U is a prime ideal.

50. Let R be a commutative ring with identity and let U be maximal among non-principal ideals of R. Prove U is a prime ideal.

51. Let R be a non-zero commutative ring with 1 and S a multiplicative subset of R not containing 0. Show that if P is maximal in the set of ideals of R not intersecting S, then P is a prime ideal.

52. Let R be a non-zero commutative ring with 1.
 (a) Let S be a multiplicative subset of R not containing 0 and let P be maximal in the set of ideals of R not intersecting S. Show that P is a prime ideal.
 (b) Show that the set of nilpotent elements of R is the intersection of all prime ideals.

53. Let R be a commutative ring with identity and let $x \in R$ be a non-nilpotent element. Prove that there exists a prime ideal P of R such that $x \not\in P$.

54. Let R be a commutative ring with identity and let S be the set of all elements of R that are not zero-divisors. Show that there is a prime ideal P such that $P \cap S$ is empty. (Hint: Use Zorn's Lemma.)

55. Let R be a commutative ring with identity and let C be a chain of prime ideals of R. Show that $\bigcup_{P \in C} P$ and $\bigcap_{P \in C} P$ are prime ideals of R.

56. Let R be a commutative ring and P a prime ideal of R. Show that there is a prime ideal $P_0 \subseteq P$ that does not properly contain any prime ideal.

57. Let R be a commutative ring with 1 such that for every x in R there is an integer $n > 1$ (depending on x) such that $x^n = x$. Show that every prime ideal of R is maximal.

58. Let R be a commutative ring with 1 in which every ideal is a prime ideal. Prove that R is a field. (Hint: For $a \neq 0$ consider the ideals (a) and (a^2).)
59. Let D be a principal ideal domain. Prove that every nonzero prime ideal of D is a maximal ideal.

60. Show that if R is a finite commutative ring with identity then every prime ideal of R is a maximal ideal.

61. Let $R = C[0, 1]$ be the ring of all continuous real-valued functions on $[0, 1]$, with addition and multiplication defined as follows. For $f, g \in R$ and $x \in [0, 1]$,

$$
(f + g)(x) = f(x) + g(x)
$$
$$
(fg)(x) = f(x)g(x).
$$

Prove that if M is a maximal ideal of R, then there is a real number $x_0 \in [0, 1]$ such that $M = \{f \in R \mid f(x_0) = 0\}$.

62. Let R be a commutative ring with identity, and let $P \subset Q$ be prime ideals of R. Prove that there exist prime ideals P^*, Q^* satisfying $P \subseteq P^* \subset Q^* \subseteq Q$, such that there are no prime ideals strictly between P^* and Q^*. HINT: Fix $x \in Q - P$ and show that there exists a prime ideal P^* containing P, contained in Q and maximal with respect to not containing x.

63. Let R be a commutative ring with 1. An ideal I of R is called a primary ideal if $I \neq R$ and for all $x, y \in R$ with $xy \in I$, either $x \in I$ or $y^n \in I$ for some integer $n \geq 1$.

(a) Show that an ideal I of R is primary if and only if $R/I \neq 0$ and every zero-divisor in R/I is nilpotent.

(b) Show that if I is a primary ideal of R then the radical $\text{Rad}(I)$ of I is a prime ideal. (Recall that $\text{Rad}(I) = \{x \in R \mid x^n \in I$ for some $n\}$.)

Commutative Rings

64. Let R be a commutative ring with identity. Show that R is an integral domain if and only if R is a subring of a field.

65. Let R be a commutative ring with identity. Show that if x and y are nilpotent elements of R then $x + y$ is nilpotent and the set of all nilpotent elements is an ideal in R.

66. Let R be a commutative ring with identity. An ideal I of R is called irreducible if it cannot be expressed as the intersection of two ideals of R neither of which is contained in the other. Show the following.

(a) If P is a prime ideal then P is irreducible.

(b) If x is a non-zero element of R, then there is an ideal I_x, maximal with respect to the property that $x \notin I_x$, and I_x is irreducible.

(c) If every irreducible ideal of R is a prime ideal, then 0 is the only nilpotent element of R.

67. Let R be a commutative ring with 1 and let I be an ideal of R satisfying $I^2 = \{0\}$. Show that if $a + I \in R/I$ is an idempotent element of R/I, then the coset $a + I$ contains an idempotent element of R.

68. Let R be a commutative ring with identity that has exactly one prime ideal P. Prove the following.

(a) R/P is a field.

(b) R is isomorphic to R_P, the ring of quotients of R with respect to the multiplicative set $R - P = \{s \in R \mid s \notin P\}$.
69. Let R be a commutative ring with identity and $\sigma : R \to R$ a ring automorphism.
 (a) Show that $F = \{r \in R \mid \sigma(r) = r\}$ is a subring of R and the identity of R is in F.
 (b) Show that if σ^2 is the identity map on R, then each element of R is the root of a monic polynomial of degree two in $F[x]$.

70. Let R be a commutative ring with identity that has exactly three ideals, $\{0\}, I,$ and R.
 (a) Show that if $a \notin I$, then a is a unit of R.
 (b) Show that if $a, b \in I$ then $ab = 0$.

71. Let R be a commutative ring with 1. Show that if u is a unit in R and n is nilpotent, then $u + n$ is a unit.

72. Let R be a commutative ring with identity. Suppose that for every $a \in R$, either a or $1 - a$ is invertible. Prove that $N = \{a \in R \mid a$ is not invertible$\}$ is an ideal of R.

73. Let R be a commutative ring with 1. Show that the sum of any two principal ideals of R is principal if and only if every finitely generated ideal of R is principal.

74. Let R be a commutative ring with identity such that not every ideal is a principal ideal.
 (a) Show that there is an ideal I maximal with respect to the property that I is not a principal ideal.
 (b) If I is the ideal of part (a), show that R/I is a principal ideal ring.

75. Recall that if $R \subseteq S$ is an inclusion of commutative rings (with the same identity) then an element $s \in S$ is integral over R if s satisfies some monic polynomial with coefficients in R. Prove the equivalence of the following statements.
 (i) s is integral over R.
 (ii) $R[s]$ is finitely generated as an R-module.
 (iii) There exists a faithful $R[s]$ module which is finitely generated as an R-module.

76. Recall that if $R \subseteq S$ is an inclusion of commutative rings (with the same identity) then S is an integral extension of R if every element of S satisfies some monic polynomial with coefficients in R. Prove that if $R \subseteq S \subseteq T$ are commutative rings with the same identity, then S is integral over R and T is integral over S if and only if T is integral over R.

77. Let $R \subseteq S$ be commutative domains with the same identity, and assume that S is an integral extension of R. Let I be a nonzero ideal of S. Prove that $I \cap R$ is a nonzero ideal of R.

Domains

78. Suppose R is a domain and I and J are ideals of R such that IJ is principal. Show that I (and by symmetry J) is finitely generated.
 [Hint: If $IJ = (a)$, then $a = \sum_{i=1}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in J$. Show the x_i generate I.]

79. [NEW] Prove that if D is a Euclidean Domain, then D is a Principal Ideal Domain.

80. Show that if p is a prime such that there is an integer b with $p = b^2 + 4$, then $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.
81. Show that if \(p \) is a prime such that \(p \equiv 1 \pmod{4} \), then \(\mathbb{Z}[\sqrt{p}] \) is not a unique factorization domain.

82. Let \(D = \mathbb{Z}(\sqrt{5}) = \{m + n\sqrt{5} \mid m, n \in \mathbb{Z}\} \) — a subring of the field of real numbers and necessarily an integral domain (you need not show this) — and \(F = \mathbb{Q}(\sqrt{5}) \) its field of fractions. Show the following:
 (a) \(x^2 + x - 1 \) is irreducible in \(D[x] \) but not in \(F[x] \).
 (b) \(D \) is not a unique factorization domain.

83. Let \(D = \mathbb{Z}(\sqrt{21}) = \{m + n\sqrt{21} \mid m, n \in \mathbb{Z}\} \) and \(F = \mathbb{Q}(\sqrt{21}) \), the field of fractions of \(D \).
 Show the following:
 (a) \(x^2 - x - 5 \) is irreducible in \(D[x] \) but not in \(F[x] \).
 (b) \(D \) is not a unique factorization domain.

84. Let \(D = \mathbb{Z}(\sqrt{-11}) = \{m + n\sqrt{-11} \mid m, n \in \mathbb{Z}\} \) and \(F = \mathbb{Q}(\sqrt{-11}) \) its field of fractions. Show the following:
 (a) \(x^2 - x + 3 \) is irreducible in \(D[x] \) but not in \(F[x] \).
 (b) \(D \) is not a unique factorization domain.

85. Let \(D = \mathbb{Z}(\sqrt{13}) = \{m + n\sqrt{13} \mid m, n \in \mathbb{Z}\} \) and \(F = \mathbb{Q}(\sqrt{13}) \) its field of fractions. Show the following:
 (a) \(x^2 + 3x - 1 \) is irreducible in \(D[x] \) but not in \(F[x] \).
 (b) \(D \) is not a unique factorization domain.

86. Let \(D \) be an integral domain and \(F \) a subring of \(D \) that is a field. Show that if each element of \(D \) is algebraic over \(F \), then \(D \) is a field.

87. Let \(R \) be an integral domain containing the subfield \(F \) and assume that \(R \) is finite dimensional over \(F \) when viewed as a vector space over \(F \). Prove that \(R \) is a field.

88. Let \(D \) be an integral domain.
 (a) For \(a, b \in D \) define a greatest common divisor of \(a \) and \(b \).
 (b) For \(x \in D \) denote \((x) = \{dx \mid d \in D\} \). Prove that if \((a) + (b) = (d) \), then \(d \) is a greatest common divisor of \(a \) and \(b \).

89. Let \(D \) be a principal ideal domain.
 (a) For \(a, b \in D \), define a least common multiple of \(a \) and \(b \).
 (b) Show that \(d \in D \) is a least common multiple of \(a \) and \(b \) if and only if \((a) \cap (b) = (d) \).

90. Let \(D \) be a principal ideal domain and let \(a, b \in D \).
 (a) Show that there is an element \(d \in D \) that satisfies the properties
 i. \(d|a \) and \(d|b \) and
 ii. if \(e|a \) and \(e|b \) then \(e|d \).
 (b) Show that there is an element \(m \in D \) that satisfies the properties
 i. \(a|m \) and \(b|m \) and
 ii. if \(a|e \) and \(b|e \) then \(m|e \).

91. Let \(R \) be a principal ideal domain. Show that if \((a) \) is a nonzero ideal in \(R \), then there are only finitely many ideals in \(R \) containing \((a) \).
92. Let D be a unique factorization domain and F its field of fractions. Prove that if d is an irreducible element in D, then there is no $x \in F$ such that $x^2 = d$.

93. Let D be a Euclidean domain. Prove that every non-zero prime ideal is a maximal ideal.

94. Let π be an irreducible element of a principal ideal domain R. Prove that π is a prime element (that is, $\pi | ab$ implies $\pi | a$ or $\pi | b$).

95. Let $\varphi : D \to \mathbb{N}$ be a Euclidean domain. Suppose $\varphi(a + b) \leq \max\{\varphi(a), \varphi(b)\}$ for all $a, b \in D$. Prove that D is either a field or isomorphic to a polynomial ring over a field.

96. Let D be an integral domain and F its field of fractions. Show that if g is an isomorphism of D onto itself, then there is a unique isomorphism h of F onto F such that $h(d) = g(d)$ for all d in D.

97. Let D be a unique factorization domain such that if p and q are irreducible elements of D, then p and q are associates. Show that if A and B are ideals of D, then either $A \subseteq B$ or $B \subseteq A$.

98. Let D be a unique factorization domain and p a fixed irreducible element of D such that if q is any irreducible element of D, then q is an associate of p. Show the following.
 (a) If d is a nonzero element of D, then d is uniquely expressible in the form up^n, where u is a unit of D and n is a non-negative integer.
 (b) D is a Euclidean domain.

99. Prove that $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} | a, b \in \mathbb{Z}\}$ is a Euclidean domain.

100. Show that the ring $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean ring and compute the greatest common divisor of $5 + i$ and 13 using the Euclidean algorithm.

Polynomial Rings

101. Show that the polynomial $f(x) = x^4 + 5x^2 + 3x + 2$ is irreducible over the field of rational numbers.

102. Let D be an integral domain and $D[x]$ the polynomial ring over D. Suppose $\varphi : D[x] \to D[x]$ is an isomorphism such that $\varphi(d) = d$ for all $d \in D$. Show that $\varphi(x) = ax + b$ for some $a, b \in D$ and that a is a unit of D.

103. Let $f(x) = a_0 + a_1x + \cdots + a_kx^k \in \mathbb{Z}[x]$ and p a prime such that $p | a_i$ for $i = 1, \ldots, k - 1$, $p \nmid a_k$, $p \nmid a_n$, and $p^2 \nmid a_0$. Show that $f(x)$ has an irreducible factor in $\mathbb{Z}[x]$ of degree at least k.

104. Let D be an integral domain and $D[x]$ the polynomial ring over D in the indeterminate x. Show that if every nonzero prime ideal of $D[x]$ is a maximal ideal, then D is a field.

105. Let R be a commutative ring with 1 and let $f(x) \in R[x]$ be nilpotent. Show that the coefficients of f are nilpotent.

106. Show that if R is an integral domain and $f(x)$ is a unit in the polynomial ring $R[x]$, then $f(x)$ is in R.

9
107. Let D be a unique factorization domain and F its field of fractions. Prove that if $f(x)$ is a monic polynomial in $D[x]$ and $\alpha \in F$ is a root of f, then $\alpha \in D$.

108. (a) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_3[x]$.

(b) Show that $x^4 + 1$ is not irreducible in $\mathbb{Z}_3[x]$.

109. Let $F[x, y]$ be the polynomial ring over a field F in two indeterminates x, y. Show that the ideal generated by $\{x, y\}$ is not a principal ideal.

110. Let F be a field. Prove that the polynomial ring $F[x]$ is a PID and that $F[x, y]$ is not a PID.

111. Let D be an integral domain and let c be an irreducible element in D. Show that the ideal (x, c) generated by x and c in the polynomial ring $D[x]$ is not a principal ideal.

112. [CORRECTED] Show that if R is a commutative ring with 1 that is not a field, then $R[x]$ is not a principal ideal domain.

113. (a) Let $\mathbb{Z}[\frac{1}{2}] = \{ \frac{a}{2^n} \mid a, n \in \mathbb{Z}, n \geq 0 \}$, the smallest subring of \mathbb{Q} containing \mathbb{Z} and $\frac{1}{2}$.

Let $(2x - 1)$ be the ideal of $\mathbb{Z}[x]$ generated by the polynomial $2x - 1$.

Show that $\mathbb{Z}[x]/(2x - 1) \cong \mathbb{Z}[\frac{1}{2}]$.

(b) Find an ideal I of $\mathbb{Z}[x]$ such that $(2x - 1) \subsetneq I \subsetneq \mathbb{Z}[x]$.

Non-commutative Rings

114. Let R be a ring with identity such that the identity map is the only ring automorphism of R. Prove that the set N of all nilpotent elements of R is an ideal of R.

115. Let p be a prime. A ring S is called a p-ring if the characteristic of S is a power of p. Show that if R is a ring with identity of finite characteristic, then R is isomorphic to a finite direct product of p-rings for distinct primes.

116. Let R be a ring.

(a) Show that there is a unique smallest (with respect to inclusion) ideal A such that R/A is a commutative ring.

(b) Give an example of a ring R such that for every proper ideal I, R/I is not commutative. Verify your example.

(c) For the ring $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}$ with the usual matrix operations, find the ideal A of part (a).

117. If R is any ring with identity, let $J(R)$ denote the Jacobson radical of R. Show that if e is any idempotent of R, then $J(eRe) = eJ(R)e$.

118. If n is a positive integer and F is any field, let $M_n(F)$ denote the ring of $n \times n$ matrices with entries in F. Prove that $M_n(F)$ is a simple ring. Equivalently, $\text{End}_F(V)$ is a simple ring if V is a finite dimensional vector space over F.

10
119. A ring R is nilpotent-free if $a^n = 0$ for $a \in R$ and some positive integer n implies $a = 0$.

(a) Suppose there is an ideal I such that R/I is nilpotent-free. Show there is a unique smallest (with respect to inclusion) ideal A such that R/A is nilpotent-free.

(b) Give an example of a ring R such that for every proper ideal I, R/I is not nilpotent-free. Verify your example.

(c) Show that if R is a commutative ring with identity, then there is a proper ideal I of R such that R/I is nilpotent-free, and find the ideal A of part (a).

Local Rings, Localization, Rings of Fractions

120. Let R be an integral domain. Construct the field of fractions F of R by defining the set F and the two binary operations, and show that the two operations are well-defined. Show that F has a multiplicative identity element and that every nonzero element of F has a multiplicative inverse.

121. A local ring is a commutative ring with 1 that has a unique maximal ideal. Show that a ring R is local if and only if the set of non-units in R is an ideal.

122. Let R be a commutative ring with 1 $\neq 0$ in which the set of nonunits is closed under addition. Prove that R is local, i.e., has a unique maximal ideal.

123. Let D be an integral domain and F its field of fractions. Let P be a prime ideal in D and $D_P = \{ab^{-1} \mid a, b \in D, b \notin P\} \subseteq F$. Show that D_P has a unique maximal ideal.

124. Let R be a commutative ring with identity and P a prime ideal of R. Let R_P be the ring of quotients of R with respect to the set $R - P = \{s \in R \mid s \notin P\}$. Show that R_P has a unique maximal ideal.

125. Let R be an integral domain, S a multiplicative set, and let $S^{-1}R = \{\frac{r}{s} \mid r \in R, s \in S\}$ (contained in the field of fractions of R). Show that if P is a prime ideal of R, then $S^{-1}P$ is either a prime ideal of $S^{-1}R$ or else equals $S^{-1}R$.

126. Let R be a commutative ring with identity and P a prime ideal of R. Let R_P be the ring of quotients of R with respect to the set $R - P = \{s \in R \mid s \notin P\}$. Show that R_P/P_P is the field of fractions of the integral domain R/P.

127. Let D be an integral domain and F its field of fractions. Denote by \mathcal{M} the set of all maximal ideals of D. For $M \in \mathcal{M}$, let $D_M = \{\frac{a}{s} \mid a, s \in D, s \notin M\} \subset F$. Show that $\bigcap_{M \in \mathcal{M}} D_M = D$.

128. Let R be a commutative ring with 1 and D a multiplicative subset of R containing 1. Let J be an ideal in the ring of fractions $D^{-1}R$ and let

$$I = \{a \in R \mid \frac{a}{d} \in J \text{ for some } d \in D\}.$$

Show that I is an ideal of R.

129. Let D be a principal ideal domain and let P be a non-zero prime ideal. Show that D_P, the localization of D at P, is a principal ideal domain and has a unique irreducible element, up to associates.
Chains and Chain Conditions

130. Let R be a commutative ring with identity. Prove that any non-empty set of prime ideals of R contains maximal and minimal elements.

131. Let R be a commutative ring with 1. We say R satisfies the ascending chain condition if whenever $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an ascending chain of ideals, there is an integer N such that $I_k = I_N$ for all $k \geq N$. Show that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

132. [NEW] Define Noetherian ring and prove that if R is Noetherian, then $R[x]$ is Noetherian.

133. Let R be a commutative Noetherian ring with identity. Prove that there are only finitely many minimal prime ideals of R.

134. [NEW] Let R be a commutative Noetherian ring in which every 2-generated ideal is principal. Prove that R is a Principal Ideal Domain.

135. Let R be a commutative Noetherian ring with identity and let I be an ideal in R. Let $J = \text{Rad}(I)$. Prove that there exists a positive integer n such that $j^n \in I$ for all $j \in J$.

136. Let R be a commutative Noetherian domain with identity. Prove that every nonzero ideal of R contains a product of nonzero prime ideals of R.

137. Let R be a ring satisfying the descending chain condition on right ideals. If $J(R)$ denotes the Jacobson radical of R, prove that $J(R)$ is nilpotent.

138. Show that if R is a commutative Noetherian ring with identity, then the polynomial ring $R[x]$ is also Noetherian.

139. Let P be a nonzero prime ideal of the commutative Noetherian domain R. Assume P is principal. Prove that there does not exist a prime ideal Q satisfying $(0) < Q < P$.

140. Let R be a commutative Noetherian ring. Prove that every nonzero ideal A of R contains a product of prime ideals (not necessarily distinct) each of which contains A.

141. Let R be a commutative ring with 1 and let M be an R-module that is not Artinian (Noetherian, of finite composition length). Let \mathcal{I} be the set of ideals I of R such that there exists an R-submodule N of M with the property that N/NI is not Artinian (Noetherian, of finite composition length, respectively). Show that if $A \in \mathcal{I}$ is a maximal element of \mathcal{I}, then A is a prime ideal of R.