QUALIFYING EXAM IN ALGEBRA
August 2007

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

 I. Linear Algebra — 1 problem
 II. Group Theory — 3 problems
 III. Ring Theory — 2 problems
 IV. Field Theory — 3 problems
 Any of the four areas — 1 problem

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.

3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.

4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.
I. Linear Algebra

1. A square matrix A over \mathbb{C} is Hermitian if $\bar{A}^t = A$. Prove that the eigenvalues of a Hermitian matrix are all real.

2. A matrix A has characteristic polynomial $\Delta(x) = (x - 3)^5$ and minimal polynomial $m(x) = (x - 3)^3$.
 (a) List all possible Jordan canonical forms for A.
 (b) Determine the Jordan canonical form of the matrix
 \[
 A = \begin{bmatrix}
 3 & -1 & 2 & 0 & 0 \\
 2 & 3 & 0 & -2 & 0 \\
 1 & 0 & 3 & -1 & 0 \\
 0 & -1 & 2 & 3 & 0 \\
 0 & 2 & -3 & 0 & 3
 \end{bmatrix},
 \]
 which has the given characteristic and minimal polynomials.

3. Let V be the vector space over the field \mathbb{R} of real numbers consisting of all functions from \mathbb{R} into \mathbb{R}. Let U be the subspace of even functions and W the subspace of odd functions. Show that $V = U \oplus W$.
II. Group Theory

1. Let G be a group and let $Z(G)$ be the center of G. Prove the following.

 (a) If $G/Z(G)$ is cyclic, then G is abelian.

 (b) If G is of order p^2, where p is a prime, then G is abelian.

3. Let $\sigma = (1\ 2\ 3)(4\ 5\ 6) \in S_6$.

 (a) Determine the size of the conjugacy class of σ and the order of the centralizer of σ in S_6.

 (b) Determine if $C_{S_6}(\sigma)$ is abelian or non-abelian. Prove your answer.

4. Let G be a finite group. Show that if G has a normal subgroup N of order 3 that is not contained in the center of G, then G has a subgroup of index 2. [Hint: The group G acts on N by conjugation.]

5. Show that a group of order 96 must have a normal subgroup of order 16 or 32.
III. Ring Theory

1. Let R be the ring of all 2×2 matrices of the form \[
\begin{bmatrix}
a & b \\
-b & a
\end{bmatrix}
\] where a and b are real numbers. Prove that R is isomorphic to \mathbb{C}, the field of complex numbers.

2. Let R be a commutative ring with identity. Show that if x and y are nilpotent elements of R then $x + y$ is nilpotent and the set of all nilpotent elements is an ideal in R.

3. Show that the ring $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean ring and compute the greatest common divisor of $5 + i$ and 13 using the Euclidean algorithm.

4. Show that if R is a commutative ring with 1 that is not a field, then $R[x]$ is not a principal ideal ring.

5. Let R be an integral domain, S a multiplicative set, and let $S^{-1}R = \{ \frac{r}{s} \mid r \in R, s \in S \}$ (contained in the field of fractions of R). Show that if P is a prime ideal of R, then $S^{-1}P$ is either a prime ideal of $S^{-1}R$ or else equals $S^{-1}R$.

IV. Field Theory

1. Find the minimal polynomial of $\alpha = \sqrt{3} + \sqrt[4]{7}$ over the field \mathbb{Q} of rational numbers, and prove it is the minimal polynomial.

2. Show that if K is algebraic over F and $\sigma : K \to K$ is an F-monomorphism, then σ is onto.

3. Prove that the multiplicative group of a finite field must be cyclic.

4. Let F be any field and let $f(x) = x^n - 1 \in F[x]$. Show that if K is the splitting field of $f(x)$ over F, then K is separable over F (hence Galois) and that $\text{Gal}(K/F)$ is abelian.

5. (a) Find the Galois group of $x^3 - 2$ over \mathbb{Q} and demonstrate the Galois correspondence between the subgroups of the Galois group and the subfields of the splitting field.

 (b) Find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$. Is there an $f(x) \in \mathbb{Q}[x]$ with splitting field $\mathbb{Q}(\sqrt[3]{2})$? Explain.