QUALIFYING EXAM IN ALGEBRA
August 2010

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

 I. Linear Algebra — 1 problem
 II. Group Theory — 3 problems
 III. Ring Theory — 2 problems
 IV. Field Theory — 3 problems
 Any of the four areas — 1 problem

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.

3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.

4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.
I. Linear Algebra

1. Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix} \) be a matrix over the field \(F \), where \(F \) is either the field of rational numbers or the field of \(p \) elements for some prime \(p \).

 (a) Find a basis of eigenvectors for \(A \) over those fields for which such a basis exists.

 (b) What is the Jordan canonical form of \(A \) over the fields of prime order not included in part (a)?

2. Let \(U, V \) and \(W \) be finite dimensional vector spaces with \(U \) a subspace of \(V \). Show that if \(T : V \rightarrow W \) is a linear transformation having the same rank as \(T|_U : U \rightarrow W \), then \(U \) is complemented in \(V \) by a subspace \(K \) satisfying \(T(x) = 0 \) for all \(x \in K \).

3. Let \(\{v_1, v_2, \ldots, v_n\} \) be a basis for a vector space \(V \) over \(\mathbb{R} \). Show that if \(w \) is any vector in \(V \), then for some choice of sign \(\pm \), \(\{v_1 \pm w, v_2, \ldots, v_n\} \) is a basis for \(V \).

II. Group Theory

1. Let \(H \) be a subgroup of the group \(G \). Show that the following are equivalent:

 (i) \(x^{-1}y^{-1}xy \in H \) for all \(x, y \in G \)

 (ii) \(H \trianglelefteq G \) and \(G/H \) is abelian.

2. Let \(G \) be a finite group and \(p \) a prime. Show that the intersection of all Sylow \(p \)-subgroups of \(G \) is a normal subgroup of \(G \).

3. Let \(G \) be a subgroup of the symmetric group \(S_n \). Show that if \(G \) contains an odd permutation then \(G \cap A_n \) is of index 2 in \(G \).

4. Let \(p \) be a prime and let \(G \) be a group of order \(p^n \) satisfying the following property:

 (*) If \(A \) and \(B \) are subgroups of \(G \) then \(A \trianglelefteq B \) or \(B \trianglelefteq A \).

 Prove that \(G \) is a cyclic group.

 [Note: This statement is also true without the assumption that \(G \) is a \(p \)-group.]

5. Let \(G \) be a finite simple group containing an element of order 9. Show that every proper subgroup of \(G \) has index at least 9.

2
III. Ring Theory

1. Let R be a commutative ring with 1. Show that an ideal P of R is prime if and only if R/P is an integral domain.

2. The Jacobson Radical $J(R)$ of a ring R is defined to be the intersection of all maximal ideals of R. Let R be a commutative ring with 1 and let $x \in R$. Show that $x \in J(R)$ if and only if $1 - xy$ is a unit for all y in R.

3. Let R be a commutative ring with 1 in which every ideal is a prime ideal. Prove that R is a field. [Hint: For $a \neq 0$ consider the ideals (a) and (a^2)].

4. Let $D = \mathbb{Z}(\sqrt{5}) = \{m + n\sqrt{5} \mid m, n \in \mathbb{Z}\}$ — a subring of the field of real numbers and necessarily an integral domain (you need not show this) — and $F = \mathbb{Q}(\sqrt{5})$ its field of fractions. Show the following:
 (a) $x^2 + x - 1$ is irreducible in $D[x]$ but not in $F[x]$.
 (b) D is not a unique factorization domain.

5. Let D be an integral domain and let c be an irreducible element in D. Show that the ideal (x, c) generated by x and c in the polynomial ring $D[x]$ is not a principal ideal.
IV. Field Theory

1. Let \(K \) be a field extension of \(F \) of degree \(n \) and let \(f(x) \in F[x] \) be an irreducible polynomial of degree \(m > 1 \). Show that if \(m \) is relatively prime to \(n \), then \(f \) has no root in \(K \).

2. Let \(K \) be an extension field of \(F \) and let \(\alpha \) be an element of \(K \). Show that the following are equivalent:
 (i) \(\alpha \) is algebraic over \(F \),
 (ii) \(F(\alpha) \) is a finite dimensional extension of \(F \),
 (iii) \(\alpha \) is contained in a finite dimensional extension of \(F \).

3. Show that if \(F \) is a field of characteristic 0 then every algebraic extension of \(F \) is separable.

4. Let \(K \) be a finite Galois extension of \(F \) of characteristic 0. Show that if \(\text{Gal}(K/F) \) is a non-trivial 2-group, then there is a quadratic extension of \(F \) contained in \(K \).

5. Let \(u = \sqrt{2} + \sqrt{2} \), \(v = \sqrt{2} - \sqrt{2} \), and \(E = \mathbb{Q}(u) \), where \(\mathbb{Q} \) is the field of rational numbers.
 (a) Find the minimal polynomial \(f(x) \) of \(u \) over \(\mathbb{Q} \).
 (b) Show \(v \in E \). Hence conclude that \(E \) is a splitting field of \(f(x) \) over \(\mathbb{Q} \).
 (c) Determine the Galois group of \(E \) over \(\mathbb{Q} \).