QUALIFYING EXAM IN ALGEBRA
August 2013

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

 I. Linear Algebra — 1 problem
 II. Group Theory — 3 problems
 III. Ring Theory — 2 problems
 IV. Field Theory — 3 problems
 Any of the four areas — 1 problem

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.

3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.

4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.
I. Linear Algebra

1. Let V be a vector space and let $T : V \to V$ be a linear transformation.

(a) Show that T is invertible if and only if the minimal polynomial of T has non-zero constant term.

(b) Show that if T is invertible then T^{-1} can be expressed as a polynomial in T.

2. Let V and W be finite dimensional vector spaces and let $T : V \to W$ be a linear transformation. Show that $\dim(\ker T) + \dim(\text{Im } T) = \dim(V)$.

3. Let V be the vector space of $n \times n$ matrices over the field \mathbb{R} of real numbers. Let U be the subspace of V consisting of symmetric matrices and W the subspace of V consisting of skew-symmetric matrices. Show that $V = U \oplus W$.

II. Group Theory

1. Let G be a group acting transitively on a set Ω. Show that the following are equivalent.

(i) The action is doubly transitive (i.e., for any two ordered pairs $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$ of elements of Ω with $\alpha_1 \neq \beta_1$ and $\alpha_2 \neq \beta_2$, there is an element g in G such that $g \cdot \alpha_1 = \alpha_2$ and $g \cdot \beta_1 = \beta_2$).

(ii) For all $\alpha \in \Omega$, the stabilizer G_α acts transitively on $\Omega - \{\alpha\}$.

2. Show that if G is a subgroup of S_n of index 2, then $G = A_n$.

3. Let G be a finite group and let P be a Sylow p-subgroup of G. Prove the following.

(a) If M is any normal p-subgroup of G then $M \leq P$.

(b) There is a normal p-subgroup N of G that contains all normal p-subgroups of G.

4. Let G be a group and G' its commutator subgroup. Show that if $g \in G$, then the conjugacy class of g is contained in gG'.

5. Show that every group of order $2013 = 3 \cdot 11 \cdot 61$ has a cyclic normal subgroup of index 3.
III. Ring Theory

1. Let R be a commutative ring with 1 and let I and J be ideals of R such that $I + J = R$. Show that $R/(I \cap J) \cong R/I \oplus R/J$.

2. Let R be a non-zero commutative ring with 1. Show that an ideal M of R is maximal if and only if R/M is a field.

3. Let R be a commutative ring with 1. An ideal I of R is called a primary ideal if $I \neq R$ and for all $x, y \in R$ with $xy \in I$, either $x \in I$ or $y^n \in I$ for some integer $n \geq 1$.

 (a) Show that an ideal I of R is primary if and only if $R/I \neq 0$ and every zero-divisor in R/I is nilpotent.

 (b) Show that if I is a primary ideal of R then the radical $\text{Rad}(I)$ of I is a prime ideal. (Recall that $\text{Rad}(I) = \{x \in R \mid x^n \in I \text{ for some } n\}$.)

4. Let D be an integral domain and F a subring of D that is a field. Show that if each element of D is algebraic over F, then D is a field.

5. Let R be a commutative ring with $1 \neq 0$ in which the set of nonunits is closed under addition. Prove that R is local, i.e., has a unique maximal ideal.
IV. Field Theory

1. Let K be an extension field of the field F such that $[K : F]$ is odd. Show that if $u \in K$ then $F(u) = F(u^2)$.

2. Let F be a field and let $f(x) \in F[x]$ have splitting field K. Show that if the degree of f is a prime p and $[K : F] = tp$ for some integer t, then

 (a) $f(x)$ is irreducible over F and

 (b) if $t > 1$ then K is a separable extension of F.

4. Let $\alpha = \sqrt{5} + 2\sqrt{5}$. Show that $\mathbb{Q}(\alpha)$ is a cyclic Galois extension of \mathbb{Q} of degree 4. Find all fields F with $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(\alpha)$.

 [Hint: Show that $f(x) = x^4 - 10x^2 + 5$ is the minimal polynomial of α over \mathbb{Q} and that the roots of f are $\pm \alpha, \pm \frac{\sqrt{5}}{\alpha}$]

5. Let E and F be subfields of a finite field K. Show that if E is isomorphic to F then $E = F$.