QUALIFYING EXAM IN ALGEBRA
August 2015

9:00 AM – 12:00 Noon

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

 I. Linear Algebra – 1 problem
 II. Group Theory – 3 problems
 III. Ring Theory – 3 problems
 IV. Field Theory – 3 problems

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.

3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.

4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.
I. Linear Algebra

1. Let A and B be $n \times n$ matrices over the complex numbers and assume $AB = BA$. Prove that A and B share a common eigenvector.

2. Let $T : V \rightarrow W$ be a surjective linear transformation. Assume that for all subsets $S \subseteq V$ that if $T(S)$ spans W then S spans V. Prove that T is one-to-one.

3. The characteristic polynomial of a certain 4×4 matrix is known to have the two distinct roots 2 and 3, with the multiplicity of the root 3 no greater than the multiplicity of 2. List all the possible Jordan normal forms of this matrix. (A rearrangement of Jordan blocks of a Jordan normal form is not regarded as a new form.)
II. Group Theory

1. Let G be a group of order pqr where $p < q < r$ are primes. Prove that some Sylow subgroup for one of these primes is normal.

2. Let $g \in S_n$ (the symmetric group on n letters) be a product of two disjoint cycles, one a k-cycle and the other an ℓ-cycle where $k < \ell$ and $k + \ell = n$. If $H = C_{S_n}(g) = \{h \in S_n \mid hg = gh\}$ then prove that H is not a transitive subgroup of S_n.

3. Let G be a finite group and P a Sylow p-subgroup of G. If $N \trianglelefteq G$ prove that $P \cap N$ is a Sylow p-subgroup of N.

4. Let G be a finite group.

 (a) Show that every proper subgroup of G is contained in a maximal subgroup.

 (b) Show that the intersection of all maximal subgroups of G is a normal subgroup.

5. Let p be a prime and let G be a non-abelian group of order p^3.

 (a) Show that the center $Z(G)$ of G and the commutator subgroup of G are equal and of order p.

 (b) Show that $G/Z(G) \cong Z_p \times Z_p$.
III. Ring Theory

1. Let $M_1 \neq M_2$ be two maximal ideals of the commutative ring R, and let $I = M_1 \cap M_2$. Prove that R/I is isomorphic to the direct sum of two fields.

2. Let R be a ring and $a, b \in R$ with $ab = 1$. Let $X = \{x \in R \mid ax = 1\}$.

 (a) If $x \in X$, prove $b + (1 - xa) \in X$.

 (b) If $\varphi : X \to X$ is the mapping given by $\varphi(x) = b + (1 - xa)$, then φ is one-to-one.

 (c) If X has more than one element, then X is an infinite set.

3. Let R be a commutative ring. Show that if x and y are nilpotent elements of R then $x + y$ is nilpotent and the set of all nilpotent elements is an ideal in R.

4. Prove that a Euclidean domain is a principal ideal domain.

5. Let R be a commutative Noetherian ring in which every 2-generated ideal is principal. Prove that R is a principal ideal domain.
IV. Field Theory

1. Let \(f(x) = (x^2 - 2)(x^2 - 3) \). Find, with proof, all the elements of \(\text{Gal}(K/\mathbb{Q}) \) where \(K \) is the splitting field of \(f(x) \) over \(\mathbb{Q} \). Also, find all intermediate subfields.

2. Let \(F \) be a field of characteristic 0. Suppose \(a \in F \) and \(f(x) = x^4 + ax^2 + 1 \) is irreducible over \(F \). Let \(K \) be a splitting field of \(f(x) \) over \(F \). Prove that \(\text{Gal}(K/F) \) has order 4 and is not cyclic. (Hint: If \(\alpha \) is a root then so are \(-\alpha \) and \(1/\alpha\).)

3. Let \(\alpha \) belong to some field extension of the field \(F \). Prove \(F(\alpha) = F[\alpha] \) if and only if \(\alpha \) is algebraic over \(F \).

4. Show that \(p(x) = x^3 + 2x + 1 \) is irreducible in \(\mathbb{Q}[x] \). Let \(\theta \) be a root of \(p(x) \) in an extension field. Find the inverse of \(1 + \theta \) in \(\mathbb{Q}[\theta] \).

5. Show that \(p(x) = x^3 + x - 6 \) is irreducible over \(\mathbb{Q}(i) \).