QUALIFYING EXAM IN ALGEBRA August 2020

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

	I.	Linear Algebra		1 problem
	II.	Group Theory		3 problems
	III.	Ring Theory		2 problems
	IV.	Field Theory		3 problems
Any of the four areas -1				1 problem

- 2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
- 3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
- 4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

- 1. (a) Let F be an algebraically closed field and n > 1. If V is a subspace of $F^{n \times n}$ satisfying dim $V \ge 2$, prove that V contains a nonzero singular matrix.
 - (b) Show by example that (a) is false if F is not algebraically closed.

2. (a) Let $J = \begin{bmatrix} \lambda & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \lambda & 1 \\ 0 & \dots & 0 & \lambda \end{bmatrix}$ be an $n \times n$ Jordan block. Show that J is similar to its transpose J^{T} .

- (b) If A is an $n \times n$ matrix with entries in \mathbb{C} , prove that A is similar to A^{T} .
- 3. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for a vector space V over \mathbb{R} . Show that if w is any vector in V, then for some choice of sign \pm , $\{v_1 \pm w, v_2, \ldots, v_n\}$ is a basis for V.

II. Group Theory

- 1. Let $n \ge 3$ be odd. Prove that the set of *n*-cycles in A_n is not a conjugacy class of A_n .
- 2. Let $K \leq H \triangleleft G$ and assume every automorphism of H is inner. Prove that $G = H N_G(K)$, where $N_G(K)$ is the normalizer of K in G.
- 3. Let P be a Sylow p-subgroup of the finite group G and let H be a subgroup containing the normalizer $N_G(P)$ of P. Prove that $N_G(H) = H$.
- 4. Show that if G is a group of order $392 = 2^3 \cdot 7^2$, then G has a normal subgroup of order 7 or a normal subgroup of order 49.
- 5. Let H be a subgroup of the group G with the property that whenever two elements of G are conjugate, then the conjugating element can be chosen within H. Prove that the commutator subgroup G' of G is contained in H.

III. Ring Theory

- 1. Let R be a commutative ring with unity and let I and J be ideals of R. Suppose that I + J = R. Prove $I \cdot J = I \cap J$.
- 2. Let R be a commutative ring with 1. Show that if I is an ideal of R such that 1 + a is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.
- 3. Prove that the set of nilpotent elements of a commutative ring R is contained in the intersection of all prime ideals of R.
- 4. (a) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_3[x]$.
 - (b) Show that $x^4 + 1$ is not irreducible in $\mathbb{Z}_3[x]$.
- 5. Let R be an integral domain that satisfies the descending chain condition on ideals. That is, whenever $I_1 \supset I_2 \supset I_3 \supset \cdots$ is a descending chain of ideals of R, there exists $m \in \mathbb{N}$ such that $I_m = I_k$ for all $k \ge m$. Prove that R is a field.

IV. Field Theory

- 1. Let p and q be distinct primes. Prove \sqrt{q} does not belong to $\mathbb{Q}(\sqrt{p})$.
- 2. Let F be a field, let $E = F(\alpha)$ be a simple extension field of F, and let $b \in E \setminus F$. Prove that α is algebraic over $F(\beta)$.
- 3. Show that if F is a field of characteristic 0 then every algebraic extension of F is separable. (Provide an argument, do not just say that every field of characteristic 0 is perfect and every algebraic extension of a perfect field is separable.)
- 4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with exactly 2 real roots. Show that the Galois group of f over \mathbb{Q} has order either 8 or 24.
- 5. Find the minimal polynomial of $\sqrt{3 + \sqrt{5}}$ over Q. Then find, with proof, the Galois group of the splitting field of this polynomial over \mathbb{Q} .