QUALIFYING EXAM IN ALGEBRA

August 2021

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

| I. | Linear Algebra | -1 problem |
| :--- | :--- | :--- | :--- |
| II. | Group Theory | -3 problems |
| III. | Ring Theory | -2 problems |
| IV. | Field Theory | -3 problems |
| Any of the four areas | -1 problem | |

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

1. (a) Prove that a 2×2 scalar matrix A over a field F has a square root (i.e., a matrix B satisfying $B^{2}=A$).
(b) Prove that a real symmetric matrix having the property that every negative eigenvalue occurs with even multiplicity has a square root. [Hint: Use (a).]
2. Let $T: V \rightarrow W$ be a surjective linear transformation of finite dimensional vector spaces over a field F (acting on the left). Show that there is a linear transformation $S: W \rightarrow V$ such that $T \circ S$ is the identity map on W.
3. Let V be a vector space over the field F. Let V^{*} be the dual space of V and let $V^{* *}$ be the dual space of V^{*}. Show that there is an injective linear transformation $\varphi: V \rightarrow V^{* *}$.

II. Group Theory

1. Let G be a nonabelian finite simple group and let H be a subgroup of index p, where p is a prime. Prove that the number of distinct conjugates of H in G is p.
2. Let G be a finite group with a normal subgroup $N \cong S_{3}$. Show that there is a subgroup H of G such that $G=N \times H$.
3. Let G be a finite group, p a prime, and P a Sylow p-subgroup of G. Let H be a subgroup of G that contains the normalizer $N_{G}(P)$ of P in G. Show that if g is an element of G such that $g^{-1} P g \leqslant H$, then g is an element of H.
4. Let G be a group with exactly 31 Sylow 3 -subgroups. Prove that there exist Sylow 3-subgroups P and Q satisfying $[P: P \cap Q]=[Q: P \cap Q]=3$.
5. Show that if G is a finite nilpotent group and m is a positive integer such that m divides the order of G, then G has a subgroup of order m.

III. Ring Theory

1. Let R be a ring with ideals A and B. Let $R / A \times R / B$ be the ring with coordinate-wise addition and multiplication. Show the following.
(a) The map $R \rightarrow R / A \times R / B$ given by $r \mapsto(r+A, r+B)$ is a ring homomorphism.
(b) The homomorphism in part (a) is surjective if and only if $A+B=R$.
2. Let R be a non-zero ring with identity. Show that every proper ideal of R is contained in a maximal ideal.
3. Let R be a commutative ring with identity and let U be maximal among non-finitely generated ideals of R. Prove U is a prime ideal.
4. Let D be a unique factorization domain such that if p and q are irreducible elements of D, then p and q are associates. Show that if A and B are ideals of D, then either $A \subseteq B$ or $B \subseteq A$.
5. Let D be a principal ideal domain and let P be a non-zero prime ideal. Show that D_{P}, the localization of D at P, is a principal ideal domain and has a unique irreducible element, up to associates.

IV. Field Theory

1. Let K be a finite degree extension of the field F such that $[K: F$] is relatively prime to 6 . Show that if $u \in K$ then $F(u)=F\left(u^{3}\right)$.
2. If K is an extension of a field F of characteristic $p \neq 0$, then an element u of K is called purely inseparable over F if $u^{p^{t}} \in F$ for some t. Show that the following are equivalent.
(i) u is purely inseparable over F.
(ii) u is algebraic over F with minimal polynomial $x^{p^{n}}-a$ for some $a \in F$ and integer n.
(iii) u is algebraic over F and its minimal polynomial factors as $(x-u)^{m}$.
3. Let m be an odd integer and let $\eta_{m}, \eta_{2 m}$ be a complex primitive m-th, $2 m$-th root of unity, respectively. Show that $\mathbb{Q}\left(\eta_{m}\right)=\mathbb{Q}\left(\eta_{2 m}\right)$.
4. Let $u=\sqrt{2+\sqrt{2}}, v=\sqrt{2-\sqrt{2}}$, and $E=\mathbb{Q}(u)$, where \mathbb{Q} is the field of rational numbers.
(a) Find the minimal polynomial $f(x)$ of u over \mathbb{Q}.
(b) Show $v \in E$. Hence conclude that E is a splitting field of $f(x)$ over \mathbb{Q}.
(c) Determine the Galois group of E over \mathbb{Q}.
5. Let E and F be finite subfields of a field K. Show that if E and F have the same number of elements, then $E=F$.
