QUALIFYING EXAM IN ALGEBRA

August 2023

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

I.	Linear Algebra		1 problem
II.	Group Theory		3 problems
III.	Ring Theory		2 problems
IV.	Field Theory		3 problems
Any of the four areas –			1 problem

- 2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
- 3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
- 4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

- 1. Let A and B be complex 2×2 matrices so that A(AB BA) = (AB BA)A. Prove that the matrix AB BA is nilpotent.
- 2. Let A and B be complex 3×3 matrices having the same eigenvectors. Suppose the minimal polynomial of A is $(x-1)^2$ and the characteristic polynomial of B is x^3 . Show that the minimal polynomial of B is x^2 .
- 3. A linear transformation $T: V \to W$ is said to be independence preserving if $T(I) \subseteq W$ is linearly independent whenever $I \subseteq V$ is a linearly independent set. Show that T is independence preserving if and only if T is one-to-one.

II. Group Theory

- 1. Let H be a proper subgroup of the finite group G. Prove that the union of all the conjugates of H is a proper subset of G.
- 2. Let G be a simple group of order greater than 2 and let Aut(G) be its automorphism group. Show that the center of Aut(G) is trivial if and only if G is non-abelian.
- 3. Show that if G is a subgroup of S_n of index 2, then $G = A_n$.
- 4. Prove that if G is a simple group containing an element of order 45, then every proper subgroup of G has index at least 14.
- 5. Prove that a group of order $29 \cdot 30$ has a normal Sylow 29-subgroup.

III. Ring Theory

- 1. Let R be a commutative ring with 1 and let I be an ideal of R such that for any $a \in I$ the element 1 + a is invertible in R. Is it true that all elements of I are nilpotent?
- 2. A ring R is called simple if $R^2 \neq 0$ and 0 and R are its only ideals. Show that the center of a simple ring is 0 or a field.
- 3. Let $D = \mathbb{Z}(\sqrt{21}) = \{m + n\sqrt{21} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{21})$, the field of fractions of D. Show the following:
 - (a) $x^2 x 5$ is irreducible in D[x] but not in F[x].
 - (b) D is not a unique factorization domain.
- 4. Let R be a ring with 1 and suppose that 2 is invertible in R. Suppose that for every x and y in R we have either xy = yx, or xy = -yx. Prove that R is commutative.
- 5. Let F[x, y] be the polynomial ring over a field F in two indeterminates x, y. Show that the ideal generated by $\{x, y\}$ is not a principal ideal.

IV. Field Theory

- Let Q be the field of rational numbers. Show that the group of automorphisms of Q is trivial.
- 2. Let K be a simple algebraic extension of a field F. Show that there are only finitely many intermediate fields between F and K.
- 3. Show that every finite field is perfect.
- 4. Determine the Galois group of $x^4 3$ over the field \mathbb{Q} of rational numbers.
- 5. Let F be a finite field. Show that the product of all the non-zero elements of F is -1.