QUALIFYING EXAM IN ALGEBRA

August 2023

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

$$
\begin{array}{llll}
\text { I. } & \text { Linear Algebra } & -1 \text { problem } \\
\text { II. } & \text { Group Theory } & -3 \text { problems } \\
\text { III. } & \text { Ring Theory } & - & 2 \text { problems } \\
\text { IV. } & \text { Field Theory } & -3 \text { problems } \\
\text { Any of the four areas } & -1 \text { problem }
\end{array}
$$

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

1. Let A and B be complex 2×2 matrices so that $A(A B-B A)=(A B-B A) A$. Prove that the matrix $A B-B A$ is nilpotent.
2. Let A and B be complex 3×3 matrices having the same eigenvectors. Suppose the minimal polynomial of A is $(x-1)^{2}$ and the characteristic polynomial of B is x^{3}. Show that the minimal polynomial of B is x^{2}.
3. A linear transformation $T: V \rightarrow W$ is said to be independence preserving if $T(I) \subseteq W$ is linearly independent whenever $I \subseteq V$ is a linearly independent set. Show that T is independence preserving if and only if T is one-to-one.

II. Group Theory

1. Let H be a proper subgroup of the finite group G. Prove that the union of all the conjugates of H is a proper subset of G.
2. Let G be a simple group of order greater than 2 and let $\operatorname{Aut}(G)$ be its automorphism group. Show that the center of $\operatorname{Aut}(G)$ is trivial if and only if G is non-abelian.
3. Show that if G is a subgroup of S_{n} of index 2 , then $G=A_{n}$.
4. Prove that if G is a simple group containing an element of order 45 , then every proper subgroup of G has index at least 14.
5. Prove that a group of order $29 \cdot 30$ has a normal Sylow 29-subgroup.

III. Ring Theory

1. Let R be a commutative ring with 1 and let I be an ideal of R such that for any $a \in I$ the element $1+a$ is invertible in R. Is it true that all elements of I are nilpotent?
2. A ring R is called simple if $R^{2} \neq 0$ and 0 and R are its only ideals. Show that the center of a simple ring is 0 or a field.
3. Let $D=\mathbb{Z}(\sqrt{21})=\{m+n \sqrt{21} \mid m, n \in \mathbb{Z}\}$ and $F=\mathbb{Q}(\sqrt{21})$, the field of fractions of D. Show the following:
(a) $x^{2}-x-5$ is irreducible in $D[x]$ but not in $F[x]$.
(b) D is not a unique factorization domain.
4. Let R be a ring with 1 and suppose that 2 is invertible in R. Suppose that for every x and y in R we have either $x y=y x$, or $x y=-y x$. Prove that R is commutative.
5. Let $F[x, y]$ be the polynomial ring over a field F in two indeterminates x, y. Show that the ideal generated by $\{x, y\}$ is not a principal ideal.

IV. Field Theory

1. Let \mathbb{Q} be the field of rational numbers. Show that the group of automorphisms of \mathbb{Q} is trivial.
2. Let K be a simple algebraic extension of a field F. Show that there are only finitely many intermediate fields between F and K.
3. Show that every finite field is perfect.
4. Determine the Galois group of $x^{4}-3$ over the field \mathbb{Q} of rational numbers.
5. Let F be a finite field. Show that the product of all the non-zero elements of F is -1 .
