QUALIFYING EXAM IN ALGEBRA

January 2022

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

I. Linear Algebra — 1 problem

II. Group Theory — 3 problems

III. Ring Theory — 2 problems

IV. Field Theory — 3 problems

Any of the four areas — 1 problem

- 2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
- 3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
- 4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

1. Let A be a matrix of the form

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ c_1 & c_2 & c_3 & \cdots & c_n \end{bmatrix}.$$

Show that the minimal polynomial and characteristic polynomial of A are equal.

- 2. Let F be a field and V a finite dimensional vector space over F with $\dim V > 1$. Suppose $f: V \to V$ and $g: V \to V$ are distinct nilpotent linear transformations satisfying $f^2 = g^2 = 0$ and that the only subspaces of V that are both f-invariant and g-invariant are V and $\{0\}$. Prove the following:
 - (a) The image of f equals the null space of f and the image of g equals the null space of g.
 - (b) V is the direct sum of the null spaces of f and g.
 - (c) $\dim V$ is even.
- 3. Let $\{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V over \mathbb{R} . Show that if \boldsymbol{w} is any vector in V, then for some choice of sign \pm , $\{v_1 \pm \boldsymbol{w}, v_2, \dots, v_n\}$ is a basis for V.

II. Group Theory

- 1. Show that if K and L are conjugacy classes of groups G and H, respectively, then $K \times L$ is a conjugacy class of $G \times H$.
- 2. Let G be a finite simple group with a subgroup H of prime index p. Show that p must be the largest prime dividing the order of G.
- 3. Let H be a proper subgroup of the finite group G. Prove that the union of all the conjugates of H is a proper subset of G.
- 4. Determine, up to isomorphism, the groups of order $2022 = 2 \cdot 3 \cdot 337$.
- 5. Let H be a normal subgroup of G, $K \leq H$, and assume every automorphism of H is inner. Prove that $G = HN_G(K)$, where $N_G(K)$ is the normalizer of K in G.

III. Ring Theory

- 1. Denote the set of invertible elements of the ring \mathbb{Z}_n by U_n .
 - (a) List all the elements of U_{20} .
 - (b) Is U_{20} a cyclic group under multiplication? Justify your answer.
- 2. Let R be any ring with identity, and n any positive integer. Prove that if $M_n(R)$ is the ring of $n \times n$ matrices with entries in R, then $M_n(I)$ is an ideal of $M_n(R)$ whenever I is an ideal of R and every ideal of $M_n(R)$ has this form.
- 3. Let R be an integral domain. Show that if all prime ideals of R are principal, then R is a Principal Ideal Domain.
- 4. Let R be a commutative ring with identity that has exactly one prime ideal P. Prove the following:
 - (a) R/P is a field.
 - (b) R is isomorphic to R_P , the ring of quotients of R with respect to the multiplicative set $R P = \{s \in R \mid s \notin P\}$.
- 5. Let D be an integral domain and D[x] the polynomial ring over D. Suppose $\varphi:D[x]\to D[x]$ is an isomorphism such that $\varphi(d)=d$ for all $d\in D$. Show that $\varphi(x)=ax+b$ for some $a,b\in D$ and that a is a unit of D.

IV. Field Theory

- 1. Let p and q be distinct primes. Prove that \sqrt{q} does not belong to $\mathbb{Q}(\sqrt{p})$.
- 2. Let F be a field and $f(x) \in F[x]$ an irreducible polynomial. Prove that there is a prime p, an integer $a \ge 0$ and a separable polynomial $g(x) \in F[x]$ such that $f(x) = g(x^{p^a})$.
- 3. Let F be any field and let $f(x) = x^n 1 \in F[x]$. Show that if K is the splitting field of f(x) over F, then K is separable over F (hence Galois) and Gal(K/F) is abelian.
- 4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume f(x) has exactly 3 distinct real roots and one complex conjugate pair of roots. Prove that if K is the splitting field of f(x) over \mathbb{Q} , then $Gal(K/\mathbb{Q})$ is S_5 .
- 5. Let F be a finite field. Show that the product of all the non-zero elements of F is -1.