QUALIFYING EXAM IN ALGEBRA

January 2023

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

$$
\begin{array}{llll}
\text { I. } & \text { Linear Algebra } & -1 \text { problem } \\
\text { II. } & \text { Group Theory } & -3 \text { problems } \\
\text { III. } & \text { Ring Theory } & - & 2 \text { problems } \\
\text { IV. } & \text { Field Theory } & -3 \text { problems } \\
\text { Any of the four areas } & -1 \text { problem }
\end{array}
$$

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.
3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.
4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.

I. Linear Algebra

1. Does there exist a 2023×2023 real matrix A such that $A^{2}=-I$, where I is the identity matrix?
2. (a) Show that two 3×3 complex matrices are similar if and only if they have the same characteristic and minimal polynomials.
(b) Is the conclusion of part (a) true for larger matrices? Prove or give a counterexample.
3. Let V be a finite dimensional vector space over a field F and let $T: V \rightarrow V$ be a nilpotent linear transformation. Show that the trace of T is 0 .

II. Group Theory

1. Let G be a group, $g \in G$ an element of order greater than 2 (possibly infinite) such that the conjugacy class of g has an odd number of elements. Prove that g is not conjugate to g^{-1}.
2. Let G be a group with a normal subgroup N of order 5 , such that $G / N \cong S_{3}$. Show that $|G|=30, G$ has a normal subgroup of order 15 , and G has 3 subgroups of order 10 that are not normal.
3. Let G be a group with a proper subgroup of finite index. Show that G has a proper normal subgroup of finite index.
4. Let G act on a set Ω and assume N is a normal subgroup of G that is contained in the kernel of the action. Show that there is a natural action of G / N on Ω which satisfies the property that G is transitive if and only if G / N is transitive.
5. Show that a group of order $3 \cdot 5 \cdot 7$ has a normal Sylow 7 -subgroup and a central Sylow 5-subgroup.

III. Ring Theory

1. Give an example of a commutative ring R and ideals I and J in which $I \cdot J \neq I \cap J$. Also, prove that if $I+J=R$, then necessarily $I \cdot J=I \cap J$.
2. Let $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a map such that $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) b+a f(b)$ for all $a, b \in \mathbb{Z}_{n}$. Prove that f is identically zero.
3. Let $D=\mathbb{Z}(\sqrt{13})=\{m+n \sqrt{13} \mid m, n \in \mathbb{Z}\}$ and $F=\mathbb{Q}(\sqrt{13})$, the field of fractions of D. Show the following:
(a) $x^{2}+3 x-1$ is irreducible in $D[x]$ but not in $F[x]$.
(b) D is not a unique factorization domain.
4. Let a be an element of a ring R. Suppose that there exists a polynomial $p(x) \in R[x]$ such that $a x \cdot p(x)=a x+p(x)$. Prove that a is nilpotent.
5. Define Noetherian ring and prove that if R is Noetherian, then $R[x]$ is Noetherian.

IV. Field Theory

1. Let K be a finite degree extension of the field F such that $[K: F$] is relatively prime to 6 . Show that if $u \in K$, then $F(u)=F\left(u^{3}\right)$.
2. Let K be the splitting field of $x^{2}+2$ over \mathbb{Q}. Prove or disprove that $i=\sqrt{-1}$ is an element of K.
3. Let F be a field of characteristic p and let x be an indeterminate over F.
(a) Show that $F\left(x^{p}\right)$ is a proper subfield of $F(x)$.
(b) Show that $F(x)$ is a splitting field for some polynomial over $F\left(x^{p}\right)$.
4. Find, with proof, the Galois group of the splitting field over the rational numbers of the polynomial $f(x)=x^{6}+3$.
5. Let F be a finite field. Prove that the polynomial ring $F[x]$ contains irreducible polynomials of arbitrarily large degree.
