Xiaoyu Zheng

Associate professor(Aug. 2012--present)
Department of Mathematical Sciences
Kent State University
Kent, OH, 44224

Phone: 330-672-9089 (O)
Fax: 330-672-2209
Email: zheng at math dot kent dot edu

  1. My CV


  • Ph.D., Mathematics, University of North Carolina at Chapel Hill, 2006
  • M.S., Mathematics, Jilin Univerisity(P. R. China), 2001
  • B.S., Mathematics, Jilin University(P. R. China), 1999

Research Interests

  • Modeling and simulation of anisotropic fluids
  • Modeling of elastic devices

Selected Publications

  1. X. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S, Wang, R. Vaia, P. Palffy-Muhoray, The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites, Journal of Materials Science, 47, 4914-4920, (2012)
  2. X. Zheng, Roland Ennis, G. P. Richards, Peter Palffy-Muhoray, A Plane Sweep Algorithm for the Voronoi Tessellation of the Sphere", electronic Liquid Crystal Communications, www.e-lc.org, (2011)
  3. X. Zheng, P. Palffy-Muhoray, Maier-Saupe theory in four dimensions, Phys. Rev. E, 83, 041702, (2011)
  4. X. Zheng, P. Palffy-Muhoray, One order parameter tensor mean field theory for biaxial liquid crystals, Discrete and Continuous Dynamical Systems-Series B, 15 (2),475-490 (2010)
  5. E. P. Choate, M. G. Forest, L. Yao, X. Zheng, and R. Zhou, A Simple Model for Non-Topological Defects in Sheared Nematic Polymer Monodomains, Journal of Computational and Theoretical Nanoscience, 7(4), 787-794, (2010)
  6. A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G. Petschek, P. Palffy-Muhoray, S. C. Glotzer, Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra, Nature, 462, 773-777 (2009)
  7. X. Zheng, W. Iglesias, P. Palffy-Muhoray, Distance of closest approach of two arbitrary hard ellipsoid, Phys. Rev. E, 79, 057702 (2009)
  8. A more detailed version of ellipse paper
  9. X. Zheng, P. Palffy-Muhoray, Distance of closest approach of two arbitrary hard ellipses in 2D, Phys. Rev. E, 75, 061709 (2007)
  10. M. G. Forest, X. Zheng, R. Zhou, Q. Wang, R. Lipton, Anisotropy and dynamic ranges in electrical properties of sheared nematic polymer nano-composites, Advanced Functional Materials, 15(12), 2029-2035(2005)ref="paper/cover.pdf">cover article)
  11. X. Zheng, M. G. Forest, R. A. Vaia, M. Arlen, R. Zhou, A strategy for dimensional percolation in sheared nanorod dispersions, Advanced Mater., 19(22), 4038-4043(2007)
  12. X. Zheng, M. G. Forest, R. Lipton, R. Zhou, Nematic polymer mechanics: flow-induced anisotropy, Continuum Mechanics and Thermodynamics, 18, 377-394 (2007)
  13. X. Zheng, M. G. Forest, R. Lipton, R. Zhou, Q. Wang, Exact scaling laws for electrical conductivity properties of nematic polymer nano-composite monodomains, Advanced Functional Materials, 15(4), 627-638 (2005)
  14. M. G. Forest, R. Zhou, Q. Wang, X. Zheng R. Lipton, Anisotropy and heterogeneity of nematic polymer nano-compositefilm properties, IMA volumes in Mathematics and its Applications,``Modeling of soft matter", 141, 85-98 (2005)
  15. H. Zhou, M. G. Forest, X. Zheng, Q. Wang, R. Lipton, Extension-enhanced conductivity of liquid crystalline polymer nano-composites, Macromolecular Symposia, 288(1), 81-90 (2005)
  16. X. Zheng, M. G. Forest, R. Zhou, Q. Wang, Likelihood & expected-time statistics of monodomain attractors in sheared discotic and rod-like nematic polymers, Rheologica Acta, 44(3), 219-234 (2005)


  1. NSF DMS-0807954, Mathematics of Anisotropic Electrical and Dielectric Properties of Nanocomposites, 07/01/2008-07/01/2011, PI
  2. NSF DMS-0821071 SCREMS: High Performance Scientific Computing Environment, by 09/01/2009, CO-PI
  3. NSF DMS-0908470 Nonlinear Diffusion on a Sphere, 10/01/2009-10/01/2011, CO-PI
  4. NSF DMS-1212046, Vorticity driven dynamics in orientationally ordered systems, 10/01/2012-09/30/2015, PI

Teaching @KSU

  1. Fall 2012: Math 32051 Mathematical Methods in Physical Sciences
  2. Fall 2012: Math 4/52031 Mathematical Models and Dynamical systems;
  3. Summer I 2012 (June 4-July 7): Math 11012 Intuitive Calculus MSB102 1:15-2:45pm M-F
  4. Spring 2012: Math 4/52045 Intro to PDE, and Math 6/72042 Applied Mathods