Boyce/DiPrima 9th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Elementary Differential Equations and Boundary Value Problems, $9^{\text {th }}$ edition, by William E. Boyce and Richard C. DiPrima, O2009 by John Wiley \& Sons, Inc.

* A linear first order ODE has the general form

$$
\frac{d y}{d t}=f(t, y)
$$

where f is linear in y. Examples include equations with constant coefficients, such as those in Chapter 1,

$$
y^{\prime}=-a y+b
$$

or equations with variable coefficients:

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

Constant Coefficient Case

\% For a first order linear equation with constant coefficients,

$$
y^{\prime}=-a y+b,
$$

recall that we can use methods of calculus to solve:

$$
\begin{aligned}
& \frac{d y / d t}{y-b / a}=-a \\
& \int \frac{d y}{y-b / a}=-\int a d t \\
& \ln |y-b / a|=-a t+C \\
& y=b / a+k e^{a t}, k= \pm e^{c}
\end{aligned}
$$

Variable Coefficient Case: Method of Integrating Factors

* We next consider linear first order ODEs with variable coefficients:

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

检 The method of integrating factors involves multiplying this equation by a function $\mu(t)$, chosen so that the resulting equation is easily integrated.

Example 1: Integrating Factor (1 of 2)

\% Consider the following equation:

$$
y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}
$$

Multiplying both sides by $\mu(t)$, we obtain

$$
\mu(t) \frac{d y}{d t}+\frac{1}{2} \mu(t) y=\frac{1}{2} e^{t / 3} \mu(t)
$$

* We will choose $\mu(t)$ so that left side is derivative of known quantity. Consider the following, and recall product rule:

$$
\frac{d}{d t}[\mu(t) y]=\mu(t) \frac{d y}{d t}+\frac{d \mu(t)}{d t} y
$$

* Choose $\mu(t)$ so that

$$
\mu^{\prime}(t)=\frac{1}{2} \mu(t) \Rightarrow \mu(t)=e^{t / 2}
$$

Example 1: General Solution (2 of 2)

With $\mu(t)=e^{t / 2}$, we solve the original equation as follows:

$$
\begin{aligned}
& y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3} \\
& e^{t / 2} \frac{d y}{d t}+\frac{1}{2} e^{t / 2} y=\frac{1}{2} e^{5 t / 6} \\
& \frac{d}{d t}\left[e^{t / 2} y\right]=\frac{1}{2} e^{5 t / 6} \\
& e^{t / 2} y=\frac{3}{5} e^{5 t / 6}+C
\end{aligned}
$$

general solution :

$$
y=\frac{3}{5} e^{t / 3}+C e^{-t / 2}
$$

Sample Solutions: $y=\frac{3}{5} e^{t / 3}+C e^{-t / 2}$

Method of Integrating Factors: Variable Right Side

\% In general, for variable right side $g(t)$, the solution can be found as follows:

$$
\begin{aligned}
& y^{\prime}+a y=g(t) \\
& \mu(t) \frac{d y}{d t}+a \mu(t) y=\mu(t) g(t) \\
& e^{a t} \frac{d y}{d t}+a e^{a t} y=e^{a t} g(t) \\
& \frac{d}{d t}\left[e^{a t} y\right]=e^{a t} g(t) \\
& e^{a t} y=\int e^{a t} g(t) d t \\
& y=e^{-a t} \int e^{a t} g(t) d t+C e^{-a t}
\end{aligned}
$$

Example 2: General Solution (1 of 2)

\% We can solve the following equation

$$
y^{\prime}-2 y=4-t
$$

using the formula derived on the previous slide:

$$
y=e^{-a t} \int e^{a t} g(t) d t+C e^{-a t}=e^{2 t} \int e^{-2 t}(4-t) d t+C e^{2 t}
$$

䊏 Integrating by parts, $\int e^{-2 t}(4-t) d t=\int 4 e^{-2 t} d t-\int t e^{-2 t} d t$

$$
\begin{aligned}
& =-2 e^{t / 5}-\left[-\frac{1}{2} t e^{-2 t}+\int \frac{1}{2} e^{-2 t} d t\right] \\
& =-\frac{7}{4} e^{-2 t}+\frac{1}{2} t e^{-2 t}
\end{aligned}
$$

紫 Thus

$$
y=e^{2 t}\left(-\frac{7}{4} e^{-2 t}+\frac{1}{2} t e^{-2 t}\right)+C e^{2 t}=-\frac{7}{4}+\frac{1}{2} t+C e^{2 t}
$$

$$
y^{\prime}-2 y=4-t
$$

Example 2: Graphs of Solutions (2 of 2)

兹 The graph shows the direction field along with several integral curves. If we set $C=0$, the exponential term drops out and you should notice how the solution in that case, through the point ($0,-7 / 4$), separates the solutions into those that grow exponentially in the positive direction from those that grow exponentially in the negative direction..

$$
y=-\frac{7}{4}+\frac{1}{2} t+C e^{2 t}
$$

Method of Integrating Factors for General First Order Linear Equation

* Next, we consider the general first order linear equation

$$
y^{\prime}+p(t) y=g(t)
$$

* Multiplying both sides by $\mu(t)$, we obtain

$$
\mu(t) \frac{d y}{d t}+p(t) \mu(t) y=g(t) \mu(t)
$$

* Next, we want $\mu(t)$ such that $\mu^{\prime}(t)=p(t) \mu(t)$, from which it will follow that

$$
\frac{d}{d t}[\mu(t) y]=\mu(t) \frac{d y}{d t}+p(t) \mu(t) y
$$

Integrating Factor for
 General First Order Linear Equation

楼 Thus we want to choose $\mu(t)$ such that $\mu^{\prime}(t)=p(t) \mu(t)$ ．
数 Assuming $\mu(t)>0$ ，it follows that

$$
\int \frac{d \mu(t)}{\mu(t)}=\int p(t) d t \Rightarrow \ln \mu(t)=\int p(t) d t+k
$$

備 Choosing $k=0$ ，we then have

$$
\mu(t)=e^{\int p(t) d t}
$$

and note $\mu(t)>0$ as desired．

Solution for

General First Order Linear Equation

\% Thus we have the following:

$$
\begin{aligned}
& y^{\prime}+p(t) y=g(t) \\
& \mu(t) \frac{d y}{d t}+p(t) \mu(t) y=\mu(t) g(t), \quad \text { where } \mu(t)=e^{\int p(t) d t}
\end{aligned}
$$

类 Then

$$
\begin{aligned}
& \frac{d}{d t}[\mu(t) y]=\mu(t) g(t) \\
& \mu(t) y=\int \mu(t) g(t) d t+c \\
& y=\frac{\int \mu(t) g(t) d t+c}{\mu(t)}, \quad \text { where } \mu(t)=e^{\int p(t) d t}
\end{aligned}
$$

Example 3: General Solution (1 of 2)

* To solve the initial value problem

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

first put into standard form:

$$
y^{\prime}+\frac{2}{t} y=4 t, \text { for } t \neq 0
$$

紫 Then

$$
\mu(t)=e^{\int p(t) d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln |t|}=e^{\ln \left(t^{2}\right)}=t^{2}
$$

and hence

$$
y=\frac{\int \mu(t) g(t) d t+C}{\mu(t)}=\frac{\int t^{2}(4 t) d t+C}{t^{2}}=\frac{1}{t^{2}}\left[\int 4 t^{3} d t+C\right]=t^{2}+\frac{C}{t^{2}}
$$

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2,
$$

Example 3: Particular Solution (2 of 2)

* Using the initial condition $y(1)=2$ and general solution

$$
y=t^{2}+\frac{C}{t^{2}}, y(1)=1+C=2 \Rightarrow C=1
$$

it follows that

$$
y=t^{2}+\frac{1}{t^{2}}
$$

* The graphs below show solution curves for the differential equation, including a particular solution whose graph contains the initial point $(1,2)$. Notice that when $C=0$, we get the parabolic solution $y=t^{2}$ (shown) and that solution separates the solutions into those that are asymptotic to the positive versus negative y-axis.

Example 4: A Solution in Integral Form (1 of 2)

䊏 To solve the initial value problem

$$
2 y^{\prime}+t y=2, \quad y(0)=1,
$$

first put into standard form:

$$
y^{\prime}+\frac{t}{2} y=1
$$

㶹 Then

$$
\mu(t)=e^{\int p(t) d t}=e^{\int \frac{t}{2} d t}=e^{\frac{t^{2}}{4}}
$$

and hence

$$
y=e^{-t^{2} / 4}\left(\int_{0}^{t} e^{s^{2} / 4} d s+C\right)=e^{-t^{2} / 4}\left(\int_{0}^{t} e^{s^{2} / 4} d s\right)+C e^{-t^{2} / 4}
$$

$$
2 y^{\prime}+t y=2, \quad y(0)=1
$$

Example 4: A Solution in Integral Form (2 of 2)

* Notice that this solution must be left in the form of an integral, since there is no closed form for the integral.

$$
y=e^{-t^{2} / 4}\left(\int_{0}^{t} e^{s^{2} / 4} d s\right)+C e^{-t^{2} / 4}
$$

* Using software such as Mathematica or Maple, we can approximate the solution for the given initial conditions as well as for other initial conditions.
* Several solution curves are shown.

