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A linear first order ODE has the general form  

where f is linear in y.  Examples include equations with 

constant coefficients, such as those in Chapter 1,

or equations with variable coefficients:
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Constant Coefficient Case

For a first order linear equation with constant coefficients,

recall that we can use methods of calculus to solve:
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Variable Coefficient Case:  

Method of Integrating Factors

We next consider linear first order ODEs with variable 

coefficients: 

The method of integrating factors involves multiplying this 

equation by a function µ(t), chosen so that the resulting 

equation is easily integrated.
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Example 1:  Integrating Factor   (1 of 2)

Consider the following equation:

Multiplying both sides by µ(t), we obtain

We will choose µ(t) so that left side is derivative of known 

quantity. Consider the following, and recall product rule:

Choose µ(t) so that
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Example 1:  General Solution   (2 of 2)

With µ(t) = et/2, we solve the original equation as follows:
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Method of Integrating Factors: 

Variable Right Side

In general, for variable right side g(t), the solution can be 

found as follows:
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Example 2:  General Solution   (1 of 2)

We can solve the following equation

using the formula derived on the previous slide:

Integrating by parts,

Thus
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Example 2:  Graphs of Solutions   (2 of 2)

The graph shows the direction field along with several integral 

curves. If we set C = 0, the exponential term drops out and you 

should notice how the solution in that case, through the point  

(0, -7/4), separates the solutions into those that grow 

exponentially in the positive direction from those that grow 

exponentially in the negative direction..
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Method of Integrating Factors for  

General First Order Linear Equation

Next, we consider the general first order linear equation

Multiplying both sides by µ(t), we obtain

Next, we want µ(t) such that µ'(t) = p(t)µ(t), from which it 

will follow that
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Integrating Factor for 

General First Order Linear Equation

Thus we want to choose µ(t) such that µ'(t) = p(t)µ(t). 

Assuming µ(t) > 0, it follows that

Choosing k = 0, we then have

and note µ(t) > 0 as desired.

ktdtpttdtp
t

td
+=⇒= ∫∫∫ )()(ln)(

)(

)(
µ

µ

µ

,)(
)( tdtp

et ∫=µ



Solution for

General First Order Linear Equation

Thus we have the following:

Then
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Example 3:  General Solution   (1 of 2)

To solve the initial value problem

first put into standard form:

Then

and hence 
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Example 3:  Particular Solution   (2 of 2)

Using the initial condition y(1) = 2 and general solution

it follows that

The graphs below show solution curves for the differential 

equation, including a particular solution whose graph contains 

the initial point (1,2). Notice that when C=0, we get the parabolic 

solution (shown)

and that solution separ-

ates the solutions into

those that are asymptotic

to the positive versus

negative y-axis.
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Example 4: A Solution in Integral Form (1 of 2)

To solve the initial value problem

first put into standard form:

Then

and hence 
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Example 4: A Solution in Integral Form (2 of 2)

Notice that this solution must be left in the form of an 

integral, since there is no closed form for the integral.

Using software such as Mathematica or Maple, we can 

approximate the solution for the given initial conditions as 

well as for other initial 

conditions.

Several solution curves 

are shown. 1 2 3 4 5 6
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