Boyce／DiPrima $9^{\text {th }}$ ed，Ch 3．1： $2^{\text {nd }}$ Order Linear Homogeneous Equations－Constant Coefficients

Elementary Differential Equations and Boundary Value Problems， $9^{\text {th }}$ edition，by William E．Boyce and Richard C．DiPrima，©2009 by John Wiley \＆Sons，Inc．
＊A second order ordinary differential equation has the general form

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

where f is some given function．
炏 This equation is said to be linear if f is linear in y and y^{\prime} ：

$$
y^{\prime \prime}=g(t)-p(t) y^{\prime}-q(t) y
$$

Otherwise the equation is said to be nonlinear．
欮 A second order linear equation often appears as

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)
$$

次 If $G(t)=0$ for all t ，then the equation is called homogeneous． Otherwise the equation is nonhomogeneous．

Homogeneous Equations, Initial Values

聯 In Sections 3.5 and 3.6, we will see that once a solution to a homogeneous equation is found, then it is possible to solve the corresponding nonhomogeneous equation, or at least express the solution in terms of an integral.
噞 The focus of this chapter is thus on homogeneous equations; and in particular, those with constant coefficients:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

We will examine the variable coefficient case in Chapter 5.

* Initial conditions typically take the form

$$
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

* Thus solution passes through $\left(t_{0}, y_{0}\right)$, and slope of solution at (t_{0}, y_{0}) is equal to $y_{0}{ }^{\prime}$.

Example 1: Infinitely Many Solutions (1 of 3)

* Consider the second order linear differential equation

$$
y^{\prime \prime}-y=0
$$

* Two solutions of this equation are

$$
y_{1}(t)=e^{t}, \quad y_{2}(t)=e^{-t}
$$

** Other solutions include

$$
y_{3}(t)=3 e^{t}, \quad y_{4}(t)=5 e^{-t}, \quad y_{5}(t)=3 e^{t}+5 e^{-t}
$$

** Based on these observations, we see that there are infinitely many solutions of the form

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t}
$$

* It will be shown in Section 3.2 that all solutions of the differential equation above can be expressed in this form.

Example 1: Initial Conditions (2 of 3)

* Now consider the following initial value problem for our equation:

$$
y^{\prime \prime}-y=0, \quad y(0)=2, y^{\prime}(0)=-1
$$

* We have found a general solution of the form

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t}
$$

* Using the initial equations,

$$
\left.\begin{array}{l}
y(0)=c_{1}+c_{2}=2 \\
y^{\prime}(0)=c_{1}-c_{2}=-1
\end{array}\right\} \Rightarrow c_{1}=1 / 2, c_{2}=3 / 2
$$

紫 Thus

$$
y(t)=1 / 2 e^{t}+3 / 2 e^{-t}
$$

Example 1: Solution Graphs (3 of 3)

* Our initial value problem and solution are

$$
y^{\prime \prime}-y=0, \quad y(0)=2, y^{\prime}(0)=-1 \Rightarrow y(t)=1 / 2 e^{t}+3 / 2 e^{-t}
$$

* Graphs of both $y(t)$ and $y^{\prime}(t)$ are given below. Observe that both initial conditions are satisfied.

Characteristic Equation

鲰 To solve the $2^{\text {nd }}$ order equation with constant coefficients,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

we begin by assuming a solution of the form $y=e^{r t}$.
${ }^{*}$ Substituting this into the differential equation, we obtain

$$
a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0
$$

䂏 Simplifying,

$$
e^{r t}\left(a r^{2}+b r+c\right)=0
$$

and hence

$$
a r^{2}+b r+c=0
$$

* This last equation is called the characteristic equation of the differential equation.
*We then solve for r by factoring or using quadratic formula.

General Solution

* Using the quadratic formula on the characteristic equation

$$
a r^{2}+b r+c=0
$$

we obtain two solutions, r_{1} and r_{2}.
糈 There are three possible results:

- The roots r_{1}, r_{2} are real and $r_{1} \neq r_{2}$.
- The roots r_{1}, r_{2} are real and $r_{1}=r_{2}$.

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The roots r_{1}, r_{2} are complex.
* In this section, we will assume r_{1}, r_{2} are real and $r_{1} \neq r_{2}$.
${ }^{*}$ In this case, the general solution has the form

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Initial Conditions

* For the initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime},
$$

we use the general solution

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

together with the initial conditions to find c_{1} and c_{2}. That is,

$$
\left.\begin{array}{r}
c_{1} e^{r_{1} t_{0}}+c_{2} e^{r_{2} t_{0}}=y_{0} \\
r_{1} e^{r_{1} t_{0}}+c_{2} r_{2} e^{r_{2} t_{0}}=y_{0}^{\prime}
\end{array}\right\} \Rightarrow c_{1}=\frac{y_{0}^{\prime}-y_{0} r_{2}}{r_{1}-r_{2}} e^{-r_{1} t_{0}}, c_{2}=\frac{y_{0} r_{1}-y_{0}^{\prime}}{r_{1}-r_{2}} e^{-r_{2} t_{0}}
$$

* Since we are assuming $r_{1} \neq r_{2}$, it follows that a solution of the form $y=e^{r t}$ to the above initial value problem will always exist, for any set of initial conditions.

Example 2 (General Solution)

* Consider the linear differential equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

** Assuming an exponential solution leads to the characteristic equation:

$$
y(t)=e^{r t} \Rightarrow r^{2}+5 r+6=0 \Leftrightarrow(r+2)(r+3)=0
$$

* Factoring the characteristic equation yields two solutions: $r_{1}=-2$ and $r_{2}=-3$
* Therefore, the general solution to this differential equation has the form

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Example 3 (Particular Solution)

- Consider the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, \quad y^{\prime}(0)=3
$$

* From the preceding example, we know the general solution has the form: $\quad y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$
* With derivative: $y^{\prime}(t)=-2 c_{1} e^{-2 t}-3 c_{2} e^{-3 t}$
** Using the initial conditions:

$$
\left.\begin{array}{r}
c_{1}+c_{2}=1 \\
-2 c_{1}-3 c_{2}=3
\end{array}\right\} \Rightarrow c_{1}=9, c_{2}=-7
$$

* Thus $y(t)=9 e^{-2 t}-7 e^{-3 t}$

Example 4: Initial Value Problem

* Consider the initial value problem

$$
4 y^{\prime \prime}-8 y^{\prime}+3 y=0, \quad y(0)=2, \quad y^{\prime}(0)=1 / 2
$$

* Then

$$
y(t)=e^{r t} \Rightarrow 4 r^{2}-8 r+3=0 \Leftrightarrow(2 r-3)(2 r-1)=0
$$

** Factoring yields two solutions, $r_{1}=3 / 2$ and $r_{2}=1 / 2$

* The general solution has the form

$$
y(t)=c_{1} e^{3 / 2}+c_{2} e^{t / 2}
$$

\% Using initial conditions:
$\left.\begin{array}{rl}c_{1}+c_{2} & =2 \\ 3 / 2 c_{1}+1 / 2 c_{2} & =1 / 2\end{array}\right\} \Rightarrow c_{1}=-1 / 2, c_{2}=5 / 2$
糈 Thus $y(t)=-1 / 2 e^{3 / 2}+5 / 2 e^{t / 2}$

Example 5: Find Maximum Value

焱 For the initial value problem in Example 3, to find the maximum value attained by the solution, we set $y^{\prime}(t)=0$ and solve for t :

$$
\begin{aligned}
y(t) & =9 e^{-2 t}-7 e^{-3 t} \\
y^{\prime}(t) & =-18 e^{-2 t}+21 e^{-3 t}=0 \\
6 e^{-2 t} & =7 e^{-3 t} \\
e^{t} & =7 / 6 \\
t & =\ln (7 / 6) \\
t & \approx 0.1542 \\
y & \approx 2.204
\end{aligned}
$$

