1. (2pts) Evaluate the given integral by changing to polar coordinates.
\[\int \int_{R} ye^{x} dA \]
where \(R \) is the region in the first quadrant enclosed by the circle \(x^2 + y^2 = 25 \).

2. (3pts) Use the polar coordinates to find the volume of the solid bounded by the paraboloid \(z = 10 - 3x^2 - 3y^2 \) and the plane \(z = 4 \).

3. (3pts) Evaluate the iterated integral by converting to polar coordinates.
\[\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \int_{0}^{\sqrt{y^2 + y^2}} dy \ dx \]

4. (3pts) Describe the region whose area is given by the integral
\[\int_{0}^{\pi/2} \int_{0}^{\sin 2\theta} r dr d\theta \]
and calculate its area.

5. (4pts) Use polar coordinates to combine the sum
\[\int_{1/\sqrt{2}}^{x} x y dy dx + \int_{1}^{\sqrt{2}} x y dy dx + \int_{0}^{2} \int_{0}^{\sqrt{1-x^2}} x y dy dx \]
into one double integral. The evaluate the double integral.

6. (2pts) Use the fact that \(\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \) to evaluate \(\int_{0}^{\infty} x^2 e^{-x^2} dx \).

7. (5pts) Find the (a) center of mass, (b) moments of inertia \(I_x, I_y, \) and \(I_0 \) of a lamina which occupies the part of the disk \(x^2 + y^2 \leq 1 \) in the first quadrant, and the density at any point is proportional to the square of its distance from origin.
\[[\frac{8}{5\pi}, \frac{8}{5\pi}, \frac{\pi k}{24}, \frac{\pi k}{24}, \frac{\pi k}{12}] \]

8. (Bonus! 3pts) An agricultural sprinkler distributes water in a circular pattern of radius 100 ft. It supplies water to a depth of \(e^{-r} \) feet per hour at a distance of \(r \) feet from the sprinkler. What is the total amount of water supplied per hour to the region inside the the circle of radius \(R \) centered at the sprinkler.
\[[2\pi(1 - Re^{-R} - e^{-R}) ft^3] \]