Graph Theory and Combinatorics MATH-42021/52021.
 Home Work 3, due on Saturday, June 26
 Instructor: Prof. Artem Zvavitch 13 points (yes, 3 extra points!)

Problem 1. Build 6-vertex graphs with the following degrees of vertices, if possible. If not possible, explain why not:

- $3,3,3,1,1,1$.
- $1,2,2,3,4,5$.
- $2,2,4,4,4,4$.

Can you make your examples connected? Planar?
Problem 2. Prove that every connected planar graph with less than 12 vertices has a vertex of degree at most 4.
Problem 3. Prove that if a connected graph has $2 k$ vertices of odd degree, then there are k disjoint trails that contain all edges.

Problem 4. Consider the graph G

- Does this graph contain Euler cycle?
- Does this graph contain Euler trail?

Problem 5. Please, TRY to remove some edges from the graph below, in a such a way that a new graph would contain and Euler cycle (note that the graph must stay connected). Explain, if this is impossible (this part is Tricky!).

Problem 6. In chess a "knight move" consists of two squares either vertically or horizontally and then one square in a perpendicular direction. Depending on where the knight is situated, he has a minimum mobility of two moves - when in a cornerand a maximum mobility of eight moves when near the center. Let C be a graph with 64 vertices corresponding to the squares of a chessboard. Let two vertices of C be joint by an edge whenever a knight can go from one of the correspond- ing squares to the other in the move. Does C have an Euler trail? (You don't have to draw C to answer!!!!)

