Graph Theory and Combinatorics MATH-42021/52021.

Home Work 1, due on Tuesday June 9
Instructor: Prof. Artem Zvavitch
13 points (yes, 3 extra points!)

Figure 1

Problem 1. Consider the graph G in Figure 1,

- Show a path from vertex a to vertex k.
- Give an example of circuit which would contains both a and k. Also how many circuits which contains both a and k are there? (note two circuits C and C^{\prime} are different, if there is a vertex v in one of them, say in C, such that $v \notin C^{\prime}$, for example, (c, h, d, c) is the same circuit as (h, d, c, h). The same is true about undirected paths)
- Two vertices are connected if there is a pass between them. The graph is connected if any two vertices are connected. Can you remove one edge from graph G in such a way that it will disconnects G ? (explain!)
- Find all sets of 2 edges whose removal disconnects the graph.
- What is the minimal number of vertex deletion required to disconnect G? (explain!)
- Find the minimal edge cover of G.
- Find a maximal independent set of G.
- Please, draw subgraphs of vertices of degree 2 i.e. the subgraph of all vertices in G which have degree 2 in G.
- Please, also draw subgraph of vertices of degree 3 i.e. the subgraph of all vertices in G which have degree 3 in G..

Problem 2. List all nonisomorphic graphs with four vertices.
Problem 3. Give an example of two non-isomorphic, connected graph with 6 vertices and 9 edges each.

NEXT PAGE, PLEASE

Problem 4. Which pairs of graphs among those four are isomorphic?

