Graph Theory and Combinatorics MATH-42021/52021.
Home Work 5, due on Tuesday, June 23
Instructor: Prof. Artem Zvavitch
10 points (+ an extra problem for 5 points)
Problem 1. Consider a graph G with n vertices:

- If q is the size of the largest independent set in graph G, show that $q \chi(G) \geq$ n.
- Use the previous result to prove that $\chi(G)(n-d) \geq n$ and thuse $\chi(G) \geq$ $n /(n-d)$, where d is the minimal degree of the vertex in G.
- Prove that $\chi(G)+\chi(\bar{G}) \leq n+1$ (Hint: Induction).
- $\chi(G) \chi(\bar{G}) \geq n$.
- Use previous inequality to show that $\chi(G)+\chi(\bar{G}) \geq 2 \sqrt{n}$.

Problem 2. Extra Show that there exists a planar graph whose every vertex has degree 5 or more.

