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Trees - basic definitions
One of the most popular and useful special type of graphs is a tree

In undirected graphs, a tree is a connected graph with no circuits.

Another way to define a tree as a graph with special designated vertex - root such
that there is a unique pass from a root to any other vertex in the tree. One can also
use this definition for directed graphs.
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Trees - basic definitions

A standard way to draw a rooted tree T is to place the root a at the top of the figure
(see the picture below)

then the vertices adjacent to a are placed one level below a (b and f in our example).
We say that root is at level 0. We also say that vertices adjacent to the root (b and
f in our example) are at level 1. Vertices adjacent to level 1 (but not at level 0) are
at level 2 (c,d ,e,k,m on our example) and so forth. Note that the level number of
vertex x in T is the length of the pass from root a to x .
For any vertex x , which is not the root, we say y is a parent of x if x and y are
adjacent and level of y is one less then the level of x . We also say, in this case, that
x is a child of y . For example f is a parent of e and e,k,m are children of f .
Vertices of T with no children are called leaves of T (O,G,Q,x ,y in our example).
Vertices with children are called internal vertices.
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Trees - some basic theorems

Theorem.
A tree with n vertices has n−1 edges.

Proof : We may assume that the tree is rooted (we select the root and structure the
tree as before).

Then we can pair every vertex (but the root!) with unique incoming edge from its
parent. This gives exactly n−1 edges.

�
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Trees - some basic theorems
If each internal vertex of a rooted tree has m children, we call T an m-ary tree.

If m = 2, then T
is a binary tree.

Theorem.

Let T be an m-ary tree with n vertices, of which i vertices are internal. Then n = mi + 1

Proof : Each vertex in the tree is a child of unique vertex (its parent). Note that each of the
internal vertices has m children, so there are in total m× i children . Adding the one childless
vertex (root) we finish the proof of the theorem.

�

Corollary

Let T be an m-ary tree with n vertices, of which i vertices are internal and l are leaves. Then
knowing just one of those parameters you may compute other two:

Given i , then l = (m− 1)i + 1 and n = mi + 1.
Given l , then i = (l− 1)/(m− 1) and n = (ml− 1)/(m− 1).
Given n, then i = (n− 1)/m and l = [(m− 1)n + 1]m.

The proof follows immediately from the theorem and the fact that l + i = n.
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Corollary
Let T be an m-ary tree with n vertices, of which i vertices are internal and l are
leaves. Then knowing just one of those parameters you may compute other two:

Given i , then l = (m−1)i +1 and n = mi +1.
Given l , then i = (l−1)/(m−1) and n = (ml−1)/(m−1).
Given n, then i = (n−1)/m and l = [(m−1)n +1]m.

Example
Assume 48 people signed up for chess tournament, how many matches will be played
in the tournament (the rules that once you loose you are "out" of the game).

The tournament schedule and plan can be managed as a binary-tree. The entrants
are leaves and the matches are internal vertices, the Winner = root. So our goal is to
find i , with m = 2 and l = 48. Using corollary we get
i = (l−1)/(m−1) = 47/1 = 47.
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The tournament schedule and plan can be managed as a binary-tree. The entrants
are leaves and the matches are internal vertices, the Winner = root. So our goal is to
find i , with m = 2 and l = 48.

Using corollary we get
i = (l−1)/(m−1) = 47/1 = 47.
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More basic theorems

The hight of a rooted tree is the length of the longest path from the root.

Equally we
can see it as the largest existing level number. A tree, of hight h, is called balanced it
all existing leaves are at level h or h−1:
This one balanced:

This one NOT
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More basic theorems

The hight of a rooted tree is the length of the longest path from the root. Equally we can see it as
the largest existing level number. A tree, of hight h, is called balanced it all existing leaves are at
level h or h− 1.

We also will denote by dre the smallest integer which is greater or equal to r .
For example d4.7e = 5 and d10e = 10.

Theorem.

Let T be an m-ary tree of hight h with l leaves. Then
l ≤ mh, and if all leaves are at height h, then l = mh.
h ≥ dlogm le, and if the tree is balanced, h = dlogm le.

Proof : To prove the first statement we will use the induction on h. The statement is obvious if
h = 0, and also not so hard if h = 1, indeed in this case the tree will have one root (as always) and
the root will have m leaves, thus l = m1.
Now assume that the statement is true for an m-ary try of hight h, our goal is to prove it for an
m-ary tree T of hight h + 1. Consider all leaves of T , note that all of them together may have at
most mh parents. Indeed if we remove the leaves of T we get an m-ary tree T ′ of hight h, and
can apply an induction to get that the number of leaves of this tree is at most mh. Now we note
that each leave of T ′ may have at most m children as a parent in T . So the number of leaves in
T is at most mh×m = mh+1.
Finally, if all of the leaves of T are at hight h + 1, then all of the leaves of T ′ are at hight h so,
applying induction, we get that the number of leaves of T ′ is exactly mh and thus the number of
leaves of T is exactly mh+1.
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More basic theorems

The hight of a rooted tree is the length of the longest path from the root. Equally we can see it as
the largest existing level number. A tree, of hight h, is called balanced it all existing leaves are at
level h or h− 1. We also will denote by dre the smallest integer which is greater or equal to r . For
example d4.7e = 5 and d10e = 10

Theorem.

Let T be an m-ary tree of hight h with l leaves. Then
l ≤ mh, and if all leaves are at height h, then l = mh.
h ≥ dlogm le, and if the tree is balanced, h = dlogm le.

Proof : The second statement of the Theorem follows from the first one.

Indeed, we notice that
the number of leaves is less or equal to mh, thus logm l ≤ h, but h is an integer number so
dlogm le ≤ h. Now if the tree T is balanced it means that if we remove all leaves at level h we
will get a tree T ′ such that all leaves of T ′ are at level h− 1 and the number of leaves in T ′ is
exactly mh−1. But, then the number of leaves in T is at least mh−1 + (m− 1) (T is oh hight h
so must have some leaves at hight h so at least one leave of T ′ must have children). Thus

mh−1 + (m− 1)≤ l ≤ mh

or
logm(mh−1 + (m− 1))≤ logm l ≤ h,

but logm(mh−1 + (m− 1)) > logm(mh−1) = h− 1, so logm l ∈ (h− 1,h], thus h = dlogm le.

�
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An example

Assume we have n coins, one of which is counterfeit, too light or too heavy, and a
balance to compare the weight of any two sets of coins (the balance can tip to the
right, to the left or to be even).

We would like for given n to provide a fastest
(minimal number of weightings) algorithm to find the counterfeit coin. To make a
problem a bit easier assume that we do know that a coin is too light.

The idea is to form a tree. The approach that we can always divide the coins into
three almost equal piles (for example round n/3 and make one pile to contain the
reminder). Compare two piles with the same number of coins. If the weight equal -
bad coin is in the third pile. If one is lighter there your bad coin.

This way we create a ternary tree with n leaves, thus the hight must be dlog3 ne.
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How many (undirected) trees are there?

Consider n items (we will denote them simply by numbers 1,2, . . . ,n).

So how many
different, undirected trees can you build with those items as the vertices? The case
n = 2 is trivial (just one tree, build by connecting two vertices with one edge). What
about n = 3:
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it.

For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9;
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9;
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7;
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6;
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6;
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1.

We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph.

Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.

Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree.

To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process.

Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence.

So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first.

Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.

�
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example)

we
set the leaf aside an continue in a similar way.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example)

we
set the leaf aside an continue in a similar way.
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How many (undirected) trees are there – general theorem.

Theorem

There are nn−2 different undirected trees on n items.

Proof : First notice that nn−2 is a number of different sequences of length (n− 2) where each
element is selected out of n (notice that we do not ask elements of the sequence to be different,
thus we can select the first element in n ways, after the second element in n ways and continue till
(n− 2)’nd element, we also note that the order does meter for sequences).
Also note, that we now can prove the theorem by creating a one to one correspondence between
trees of n-elements and sequences of n-elements. For any tree of n elements we will create a
sequence (s1, . . . , sn−2) of length n− 2 as follows. Let l1 be a leaf of the tree with smallest
number and let s1 be the number of the one vertex adjacent to it. For example on the tree below
l1 is a leaf with number 2 on it and s1 = 9.

Now we remove the vertex l1 and repeat the process. For our example we will get l2 = 3 and
s2 = 9; l3 = 4 and s3 = 9; l4 = 5 and s4 = 7; l5 = 7 and s5 = 6; l6 = 8 and s6 = 6; l7 = 9 and
s7 = 1. We got sequence (9,9,9,7,6,6,1) corresponding to our graph. Such sequence are called
Prufer Sequences.
Our next goal is to show that any such (n− 2)-length sequence defines a unique n-item tree. To
do this we simply reverse the process. Observe that leaves (vertices of degree 1) will never appear
in the sequence. So we draw them first. Next observe that the first number of the sequence (9
in our case) is the neighbor of the smallest numbered leaf (leaf with number 2 in our example) we
set the leaf aside an continue in a similar way.
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