Lecture 11
 MATH-42021/52021 Graph Theory and Combinatorics.

Artem Zvavitch

Department of Mathematical Sciences, Kent State University

July, 2016.

Welcome to Combinatorics
Two different principles:

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element).

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke!

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$,

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set,, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question!

Welcome to Combinatorics

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set,, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics,

Welcome to Combinatorics

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry

Welcome to Combinatorics

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$. But it could be that all Differential Geometry students take Combinatorics.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$. But it could be that all Differential Geometry students take Combinatorics. Then 32 people take ONLY combinatorics,

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set,, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$. But it could be that all Differential Geometry students take Combinatorics. Then 32 people take ONLY combinatorics, NONE takes ONLY differential Geometry

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set,, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$. But it could be that all Differential Geometry students take Combinatorics. Then 32 people take ONLY combinatorics, NONE takes ONLY differential Geometry and 38 take both classes,

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, ..., and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

Example

There are 70 students in Artem's Combinatorics class and 38 students in Artem's Differential Geometry class. How many students are in these two classes?

This question may looks for some of you like a trivial joke! The answer should be $70+38=108$, BUT BE CAREFUL! In general you can not answer this question! Because, some students in Combinatorics class may be also students in Artem's Differential Geometry class and the answer is very dependent on the number of such students. For example, if there are 10 students who take both classes, then 60 students take ONLY combinatorics, 28 take ONLY differential Geometry and 10 take both classes. So, we created 3 disjoint sets of students and now we may add them up using Addition Principle: $60+28+10=98$. But it could be that all Differential Geometry students take Combinatorics. Then 32 people take ONLY combinatorics, NONE takes ONLY differential Geometry and 38 take both classes, and we get that there are $32+0+28=70$ different students in both classes. .

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage,

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage.

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

- How many different students are in these two high schools?

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

- How many different students are in these two high schools? $->$ the sets of students are disjoint thus we can use Addition Principle $3000+4000=7000$.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

- How many different students are in these two high schools? $->$ the sets of students are disjoint thus we can use Addition Principle $3000+4000=7000$.
- If we need to select a pair of students (one from Aurora and another from Twinsburgh) in how many different ways we can do it?

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

- How many different students are in these two high schools? $->$ the sets of students are disjoint thus we can use Addition Principle $3000+4000=7000$.
- If we need to select a pair of students (one from Aurora and another from Twinsburgh) in how many different ways we can do it? —> We may first select a student from Aurora and after (independently) select a student from Twinsburgh, thus, using Multiplication Principle, we get $3000 \times 4000=12000000$.

Two different principles:

The Addition Principle

Assume there are n_{1} different objects in the first set, n_{2} different objects in the second set, \ldots, and n_{m} different objects in the m th set. We assume that all of those sets are disjoint (i.e. any two different sets contain NO common element). Then the number of ways to collect ONE object from one of the m sets is

$$
n_{1}+n_{2}+\cdots+n_{m}
$$

The Multiplication Principle

Suppose a procedure can be broken into m successive (i.e. ORDERED) stages, with n_{1} outcomes in the first stage, n_{2} outcomes in the second stage, $\ldots n_{m}$ outcomes in m th stage. If the number of outcomes at each stage is independent of the choice in previous stages and if the composite outcomes are all distinct, then the total procedure has

$$
n_{1} \times n_{2} \times \cdots \times n_{m}
$$

different composite outcomes.

Example

Assume that currently there are 3000 students in Aurora high school and 4000 in Twinsburgh high school. It is not allowed to a student to attend two high schools at the same time:

- How many different students are in these two high schools? $->$ the sets of students are disjoint thus we can use Addition Principle $3000+4000=7000$.
- If we need to select a pair of students (one from Aurora and another from Twinsburgh) in how many different ways we can do it? —> We may first select a student from Aurora and after (independently) select a student from Twinsburgh, thus, using Multiplication Principle, we get $3000 \times 4000=12000000$.

More Examples

Three dice are rolled one red, one blue and one green.

More Examples

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?

More Examples

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die.

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes).

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}.

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}. Now, to compute all possible ways to have no repetitions in our experiment we will imagine that the red die was rolled first (and thus there are 6 possible outcomes),

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}. Now, to compute all possible ways to have no repetitions in our experiment we will imagine that the red die was rolled first (and thus there are 6 possible outcomes), next we roll the green die and thus there are 5 possible outcomes (remember green must be different from red!),

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}. Now, to compute all possible ways to have no repetitions in our experiment we will imagine that the red die was rolled first (and thus there are 6 possible outcomes), next we roll the green die and thus there are 5 possible outcomes (remember green must be different from red!), finally the blue die is rolled and there are 4 possible outcomes.

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}. Now, to compute all possible ways to have no repetitions in our experiment we will imagine that the red die was rolled first (and thus there are 6 possible outcomes), next we roll the green die and thus there are 5 possible outcomes (remember green must be different from red!), finally the blue die is rolled and there are 4 possible outcomes. Thus all together we have $6 \times 5 \times 4$ outcomes

Three dice are rolled one red, one blue and one green.

- How many different outcomes of this procedure are there?
- What is the probability that there are all different values on the three dice (i.e. NO two dices give the same value)?

Solution: There are six outcomes of a single die. So, by the multiplication principle the answer to the first question is $6 \times 6 \times 6=6^{3}=216$.
We calculate the probability (answer to the second question) using the probability formula for an event - the fraction of outcomes producing the desired event divided by the all possible outcomes (if you have never seen probability before NO WORRIES, treat this question simply asking what is the ratio of the number of all outcomes with different number on three dice to the number of all outcomes). The denominator of the fraction we are looking for is 6^{3}. Now, to compute all possible ways to have no repetitions in our experiment we will imagine that the red die was rolled first (and thus there are 6 possible outcomes), next we roll the green die and thus there are 5 possible outcomes (remember green must be different from red!), finally the blue die is rolled and there are 4 possible outcomes. Thus all together we have $6 \times 5 \times 4$ outcomes and the answer to the second question is:

$$
\frac{6 \times 5 \times 4}{6^{3}}=\frac{5}{9} .
$$

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods!

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen;

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen.

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen. Note that those two cases do not overlap, thus we can first compute number of outcomes in each of them and after use Addition principle.

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen. Note that those two cases do not overlap, thus we can first compute number of outcomes in each of them and after use Addition principle.
We note that there are 30×45 ways to select English and Russian books;

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen. Note that those two cases do not overlap, thus we can first compute number of outcomes in each of them and after use Addition principle.
We note that there are 30×45 ways to select English and Russian books; 45×12 to select Russian and Hebrew books

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen. Note that those two cases do not overlap, thus we can first compute number of outcomes in each of them and after use Addition principle.
We note that there are 30×45 ways to select English and Russian books; 45×12 to select Russian and Hebrew books and finally 30×12 to select English and Hebrew books.

Artem has 30 books in English, 45 books in Russian and 12 books in Hebrew. How many ways are there to pick an (unordered) pair of two books not both in the same language?

Solution: Here we will need to combine our methods! The idea is to consider cases: 1) English and Russian books are chosen; 2) Russian and Hebrew books are chosen and finally 3) English and Hebrew books are chosen. Note that those two cases do not overlap, thus we can first compute number of outcomes in each of them and after use Addition principle.
We note that there are 30×45 ways to select English and Russian books; 45×12 to select Russian and Hebrew books and finally 30×12 to select English and Hebrew books. Thus the answer to our problem is

$$
30 \times 45+45 \times 12+30 \times 12=2250
$$

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e ?

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e ?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e ?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first)

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence.
Note that those two cases are disjoint (again there may be only ONE letter e).

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence. Note that those two cases are disjoint (again there may be only ONE letter e). Thus we may compute them separately.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence.
Note that those two cases are disjoint (again there may be only ONE letter e). Thus we may compute them separately. If e is at the first place we have 5 letters left to select the second letter (we can not use e) and 4 letters left to select the third (we can not use e and the letter selected as the second).

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence. Note that those two cases are disjoint (again there may be only ONE letter e). Thus we may compute them separately. If e is at the first place we have 5 letters left to select the second letter (we can not use e) and 4 letters left to select the third (we can not use e and the letter selected as the second). Thus using multiplication principle we get $5 \times 4=20$ for the letter e at first place.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence. Note that those two cases are disjoint (again there may be only ONE letter e). Thus we may compute them separately. If e is at the first place we have 5 letters left to select the second letter (we can not use e) and 4 letters left to select the third (we can not use e and the letter selected as the second). Thus using multiplication principle we get $5 \times 4=20$ for the letter e at first place. But the same logic applies when e is at second or at the third place,

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing the letter e ?
(4) With repetition and containing letter e ?

Solution: 1) With repetition we have 6 choices to select each letter in the sequences. So by multiplication principle there are $6^{3}=216$ three-letter sequences with repetition.
2) Without repetition there are 6 choices for the first letter, 5 for the second (note the number IS the same what ever letter we choose as first) and 4 for the third. Thus, again using multiplication principle we get $6 \times 5 \times 4=120$.
3) Now we must use exactly one letter "e" and can not repeat other letters. Note that there are 3 cases, letter e may be at first place, second place and third place in our three-letter sequence. Note that those two cases are disjoint (again there may be only ONE letter e). Thus we may compute them separately. If e is at the first place we have 5 letters left to select the second letter (we can not use e) and 4 letters left to select the third (we can not use e and the letter selected as the second). Thus using multiplication principle we get $5 \times 4=20$ for the letter e at first place. But the same logic applies when e is at second or at the third place, thus the final answer is $20+20+20=60$.

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters.

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question.

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap.

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle.

More Examples

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways,

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e?

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e? Yes we can!

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e? Yes we can! because those are three-letter sequences with repetition made up of letters "a,b,c,d,f" (i.e. of 5 letters - all but NOT e).

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e? Yes we can! because those are three-letter sequences with repetition made up of letters "a,b,c,d,f" (i.e. of 5 letters - all but NOT e). Using the logic of first question we get that there are $5^{3}=125$ bad sequences.

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e ?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e? Yes we can! because those are three-letter sequences with repetition made up of letters "a,b,c,d,f" (i.e. of 5 letters - all but NOT e). Using the logic of first question we get that there are $5^{3}=125$ bad sequences. Thus the number of sequences with e is

$$
216-125=91
$$

How many ways are there to form a three-letter sequence using letters a, b, c, d, e, f ?
(1) With repetition of letters allowed?
(2) Without repetition of any letter?
(3) Without repetition and containing exactly one letter e?
(4) With repetition and containing letter e ?

Solution: 4) If we must use letter e and can repeat letters. Let us first try the approach used in solution of the previous question. Note that we may use one letter e; two letters e or 3 letters e and those cases do not overlap. Thus we can first compute the number of outcomes in each of them and after use addition principle. Assume we can use one letter e. Again there are 3 general cases: letter e first, second or third in our sequence. In each of those cases you can select each of two other letters in 5 ways, thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$. If now we have exactly two letters e in our sequence, we can again consider 3 cases: no e at the first place, not e at the second place, and no e at the third place. In each of those cases we may select one letter left in 5 ways, thus all together it gives $3 \times 5=15$. Finally the cases of all three letters to be e, has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question. We know that all together there are $6^{3}=216$ three-letter sequences with repetition. But can we say how many of them are "bad", i.e. do not contain e? Yes we can! because those are three-letter sequences with repetition made up of letters "a,b,c,d,f" (i.e. of 5 letters - all but NOT e). Using the logic of first question we get that there are $5^{3}=125$ bad sequences. Thus the number of sequences with e is

$$
216-125=91
$$

The above solutions show that in many cases one may save a lot of time by finding a right way to model the problem.

How many ways are there to form a three－letter sequence using letters a, b, c, d, e, f ？
（1）With repetition of letters allowed？
（2）Without repetition of any letter？
（3）Without repetition and containing exactly one letter e？
（4）With repetition and containing letter e ？
Solution：4）If we must use letter e and can repeat letters．Let us first try the approach used in solution of the previous question．Note that we may use one letter e；two letters e or 3 letters e and those cases do not overlap．Thus we can first compute the number of outcomes in each of them and after use addition principle．Assume we can use one letter e．Again there are 3 general cases：letter e first，second or third in our sequence．In each of those cases you can select each of two other letters in 5 ways，thus each of those cases have 5×5 outcomes and there are 3 of them so all together it gives us $3 \times 5 \times 5=75$ ．If now we have exactly two letters e in our sequence，we can again consider 3 cases：no e at the first place，not e at the second place，and no e at the third place．In each of those cases we may select one letter left in 5 ways，thus all together it gives $3 \times 5=15$ ．Finally the cases of all three letters to be e，has just one outcome and the final answer is

$$
75+15+1=91
$$

There is another nice way to answer this question．We know that all together there are $6^{3}=216$ three－letter sequences with repetition．But can we say how many of them are＂bad＂，i．e．do not contain e？Yes we can！because those are three－letter sequences with repetition made up of letters＂a，b，c，d，f＂（i．e．of 5 letters－all but NOT e）．Using the logic of first question we get that there are $5^{3}=125$ bad sequences．Thus the number of sequences with e is

$$
216-125=91
$$

The above solutions show that in many cases one may save a lot of time by finding a right way to model the problem．NOTE in many example it is very non－trivial to find＂any＂model and thus $\bar{\equiv}$

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases,

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this),

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon)

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on.

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!).

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out:

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not,

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not, this is exactly how we may create the groups, and we assume that the students make their decision independently of each other.

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not, this is exactly how we may create the groups, and we assume that the students make their decision independently of each other. Thus there are 2 ways for each student to decide,

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not, this is exactly how we may create the groups, and we assume that the students make their decision independently of each other. Thus there are 2 ways for each student to decide, we may use Multiplication Principle to get that the number of groups is 2^{70},

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not, this is exactly how we may create the groups, and we assume that the students make their decision independently of each other. Thus there are 2 ways for each student to decide, we may use Multiplication Principle to get that the number of groups is 2^{70}, but note that in our calculation we have included an empty group (i.e. each student decide not to participate).

How many different (non-empty!) groups of students can be created out of our Combinatorics class containing 70 students?

Solution: One may start braking the problem into sub-cases, for example the first case is the group includes only one student (there are 70 different groups like this), next case the group includes exactly two students (so think how many different groups you get then... we will come back to it very soon) and so on. This is a good solution but will take a bit of time and the numbers really become huge and it is not so trivial to see the pattern and add them up in a good way (if you have not done it before!). But there is another way out: each student may decide is she or he in the group or not, this is exactly how we may create the groups, and we assume that the students make their decision independently of each other. Thus there are 2 ways for each student to decide, we may use Multiplication Principle to get that the number of groups is 2^{70}, but note that in our calculation we have included an empty group (i.e. each student decide not to participate). Thus the final answer is

$$
2^{70}-1
$$

