Lecture 15
 MATH-42021/52021 Graph Theory and Combinatorics.

Artem Zvavitch

Department of Mathematical Sciences, Kent State University

July, 2016.

Binomial Coefficients

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Binomial Coefficients

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Let us compute $(x+y)^{n}$ we know that

Binomial Coefficients

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y if we pick k times $-x$,

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y if we pick k times $-x$, then we must pick $(n-k)-y$, and the outcome is $x^{k} y^{n-k}$.

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y if we pick k times $-x$, then we must pick $(n-k)-y$, and the outcome is $x^{k} y^{n-k}$. But in how many ways we can pick a place from which we pick k of x 's?????

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y if we pick k times $-x$, then we must pick $(n-k)-y$, and the outcome is $x^{k} y^{n-k}$. But in how many ways we can pick a place from which we pick k of x 's????? Note, we do note care about the order! Thus exactly from

$$
\binom{n}{k}
$$

places!!

An k-combination of n distinct objects is an unordered selection or subset of k out of the n objects. We will denote the number of such selection as $C(n, k)$:

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Let us compute $(x+y)^{n}$ we know that

$$
(x+y)^{n}=\underbrace{(x+y) \times(x+y) \times(x+y) \times \cdots \times(x+y)}_{n-\text { times }}
$$

Now we need to multiply, we need to pick ONE element from each of multipliers $(x+y)$ it can be x or y if we pick k times $-x$, then we must pick $(n-k)-y$, and the outcome is $x^{k} y^{n-k}$. But in how many ways we can pick a place from which we pick k of x 's????? Note, we do note care about the order! Thus exactly from

$$
\binom{n}{k}
$$

places!! And the final formula is

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Binomial Idenitities

Very simple but still cool:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Binomial Idenitities

Very simple but still cool:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof: Yes it is trivial, but still

Very simple but still cool:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof: Yes it is trivial, but still

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}
$$

Binomial Identities

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof.

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee.

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people.

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him.

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him. Let's first compute how many different committees we can create without Artem's participation

Binomial Identities

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him. Let's first compute how many different committees we can create without Artem's participation - we need to choose k people out of $n-1$ people so there are $\binom{n-1}{k}$ ways to do it.

Binomial Identities

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him. Let's first compute how many different committees we can create without Artem's participation - we need to choose k people out of $n-1$ people so there are $\binom{n-1}{k}$ ways to do it. Next, in how many ways you can create a committee with Artem's participation:

Binomial Identities

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him. Let's first compute how many different committees we can create without Artem's participation - we need to choose k people out of $n-1$ people so there are $\binom{n-1}{k}$ ways to do it. Next, in how many ways you can create a committee with Artem's participation: Artem IS there so you left to choose $k-1$ people out of $n-1$ people: $\binom{n-1}{k-1}$ thus

Binomial Identities

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{1}{k}+\frac{1}{(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-1-k)!}\left(\frac{n-k+k}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

We can also give a combinatorial proof. Remember $C(n, k)$ is a number of ways to choose k (say) people out of n people to create a committee. Now, assume, Artem is among those n people. Then there are two (disjoint!) ways to create a committee one with Artem in the committee another without him. Let's first compute how many different committees we can create without Artem's participation - we need to choose k people out of $n-1$ people so there are $\binom{n-1}{k}$ ways to do it. Next, in how many ways you can create a committee with Artem's participation: Artem IS there so you left to choose $k-1$ people out of $n-1$ people: $\binom{n-1}{k-1}$ thus

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Also simple and even more cool:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula.

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

$$
0=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

$$
0=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

Now just take $y=1$,

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

$$
0=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

Now just take $y=1$, you get $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$.

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

$$
0=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

Now just take $y=1$, you get $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Take the derivative from both sides of this equality:

$$
n(1+x)^{n-1}=\sum_{k=1}^{n}\binom{n}{k} k x^{k-1}
$$

Now, substitute $x=1$:

Binomial Identities: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

One can create a lot of cool identities just by using this formula. Indeed, take $x=y=1$:

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}
$$

Take $x=-1, y=1$:

$$
0=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

Now just take $y=1$, you get $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Take the derivative from both sides of this equality:

$$
n(1+x)^{n-1}=\sum_{k=1}^{n}\binom{n}{k} k x^{k-1}
$$

Now, substitute $x=1$:

$$
n 2^{n-1}=\sum_{k=1}^{n}\binom{n}{k} k=1\binom{n}{1}+2\binom{n}{2}+\cdots+(n-1)\binom{n}{n-1}+n\binom{n}{n}
$$

Binomial Identities

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Binomial Identities

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

Binomial Identities

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Binomial Identities

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Binomial Identities

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{m+i}{m}=\binom{m+i+1}{i}
$$

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{m+i}{m}=\binom{m+i+1}{i}
$$

Solution: Looks very different from previous problem?

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{m+i}{m}=\binom{m+i+1}{i}
$$

Solution: Looks very different from previous problem? No, it is actually exactly the same!

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{m+i}{m}=\binom{m+i+1}{i}
$$

Solution: Looks very different from previous problem? No, it is actually exactly the same! Just note that $\binom{m+i}{m}=\binom{m+i}{m+i-m}=\binom{m+i}{i}$.

Prove that

$$
\binom{m}{0}+\binom{m+1}{1}+\binom{m+2}{2}+\cdots+\binom{m+i}{i}=\binom{m+i+1}{i}
$$

Solution: Using identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$, with $n=m+i+1$ and $k=i$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}
$$

Now repeat with with $n=m+i$ and $k=i-1$ we get

$$
\binom{m+i+1}{i}=\binom{m+i}{i}+\binom{m+i}{i-1}=\binom{m+i}{i}+\binom{m+i-1}{i-1}+\binom{m+i-1}{i-2}
$$

Just continue the process.

Prove that

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{m+i}{m}=\binom{m+i+1}{i}
$$

Solution: Looks very different from previous problem? No, it is actually exactly the same! Just note that $\binom{m+i}{m}=\binom{m+i}{m+i-m}=\binom{m+i}{i}$. In addition, we can also rewrite the above formula as

$$
\binom{m}{m}+\binom{m+1}{m}+\binom{m+2}{m}+\cdots+\binom{n}{m}=\binom{n+1}{m+1}
$$

where $n \geq m$.

Binomial Identities

Assume we have $2 n$ objects.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it?

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way?

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES!

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$. For each k we have $\binom{n}{k}\binom{n}{n-k}$ options.

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$. For each k we have $\binom{n}{k}\binom{n}{n-k}$ options. Thus

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{n-n}
$$

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$. For each k we have $\binom{n}{k}\binom{n}{n-k}$ options. Thus

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{n-n}
$$

This is already a cool formula! Can it get better?

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$. For each k we have $\binom{n}{k}\binom{n}{n-k}$ options. Thus

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{n-n}
$$

This is already a cool formula! Can it get better? YES! Use that $\binom{n}{k}=\binom{n}{n-k}$ to get that

Assume we have $2 n$ objects. You need to select n of them, in how many ways you can do it? Clearly, in $\binom{2 n}{n}$. Can we compute it in another way? Actually YES! Divide the group into two groups of n objects. Now, each time you need to create group of n objects you pick k from first group and $n-k$ from the second group. This should be done for each $k=0,1,2,3, \ldots, n$. For each k we have $\binom{n}{k}\binom{n}{n-k}$ options. Thus

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{n-n}
$$

This is already a cool formula! Can it get better? YES! Use that $\binom{n}{k}=\binom{n}{n-k}$ to get that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}
$$

Binomial Identities

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients?

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
1 \times 2 \times 3=3!
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
\begin{aligned}
& 1 \times 2 \times 3=3! \\
& 2 \times 3 \times 4=\frac{4!}{1!}
\end{aligned}
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
\begin{gathered}
1 \times 2 \times 3=3! \\
2 \times 3 \times 4=\frac{4!}{1!} \\
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!} .
\end{gathered}
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
\begin{gathered}
1 \times 2 \times 3=3! \\
2 \times 3 \times 4=\frac{4!}{1!} \\
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!} .
\end{gathered}
$$

OR

$$
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!}=3!\frac{k!}{3!(k-3)!}=3!\binom{k}{3} .
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
\begin{gathered}
1 \times 2 \times 3=3! \\
2 \times 3 \times 4=\frac{4!}{1!} \\
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!} .
\end{gathered}
$$

OR

$$
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!}=3!\frac{k!}{3!(k-3)!}=3!\binom{k}{3} .
$$

SO

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n=3!\left(\binom{3}{3}+\binom{4}{3}+\cdots+\binom{n}{3}\right) .
$$

Evaluate

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n
$$

Solution Looks not related to our story and binomial coefficients? Look more careful!

$$
\begin{gathered}
1 \times 2 \times 3=3! \\
2 \times 3 \times 4=\frac{4!}{1!} \\
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!} .
\end{gathered}
$$

OR

$$
(k-2) \times(k-1) \times k=\frac{k!}{(k-3)!}=3!\frac{k!}{3!(k-3)!}=3!\binom{k}{3} .
$$

SO

$$
1 \times 2 \times 3+2 \times 3 \times 4+\cdots+(n-2) \times(n-1) \times n=3!\left(\binom{3}{3}+\binom{4}{3}+\cdots+\binom{n}{3}\right) .
$$

Now search for possible identities, to get that

$$
=3!\binom{n+1}{3+1}=6\binom{n+1}{4}
$$

Binomial Identities.

$$
\begin{aligned}
& \text { Evaluate } \\
& \qquad 1+2+3+\cdots+(n-2)+(n-1)+n
\end{aligned}
$$

Binomial Identities.

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n .
$$

Solution:

$$
1+2+3+\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!}
$$

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3 & +\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3 & +\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3 & +\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Solution:

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n}[k(k-1)+k]=\sum_{k=2}^{n} k(k-1)+\sum_{k=1}^{n} k .
$$

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3 & +\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Solution:

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n}[k(k-1)+k]=\sum_{k=2}^{n} k(k-1)+\sum_{k=1}^{n} k .
$$

We know the answer for the second sum (it is $(n+1) n / 2$), so we concentrate on the first one:

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3 & +\cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Solution:

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n}[k(k-1)+k]=\sum_{k=2}^{n} k(k-1)+\sum_{k=1}^{n} k .
$$

We know the answer for the second sum (it is $(n+1) n / 2$), so we concentrate on the first one:

$$
\sum_{k=2}^{n} k(k-1)=\sum_{k=2}^{n} \frac{k!}{(k-2)!}=2!\sum_{k=2}^{n} \frac{k!}{2!(k-2)!}=2!\sum_{k=2}^{n}\binom{k}{2}=2!\binom{n+1}{3}
$$

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3+ & \cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Solution:

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n}[k(k-1)+k]=\sum_{k=2}^{n} k(k-1)+\sum_{k=1}^{n} k .
$$

We know the answer for the second sum (it is $(n+1) n / 2$), so we concentrate on the first one:

$$
\sum_{k=2}^{n} k(k-1)=\sum_{k=2}^{n} \frac{k!}{(k-2)!}=2!\sum_{k=2}^{n} \frac{k!}{2!(k-2)!}=2!\sum_{k=2}^{n}\binom{k}{2}=2!\binom{n+1}{3}
$$

The final answer is
$2!\frac{(n+1)!}{3!(n-2)!}+\frac{(n+1) n}{2}=\frac{(n+1) n(n-1)}{3}+\frac{(n+1) n}{2}=\frac{(n+1) n}{6}(2 n-2+3)=\frac{(n+1) n(2 n+1)}{6}$.

Evaluate

$$
1+2+3+\cdots+(n-2)+(n-1)+n
$$

Solution:

$$
\begin{aligned}
1+2+3+ & \cdots+(n-2)+(n-1)+n=\frac{1!}{1!}+\frac{2!}{1!}+\frac{3!}{2!}+\cdots+\frac{n!}{(n-1)!} \\
& =\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1) n}{2}
\end{aligned}
$$

Evaluate

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}
$$

Solution:

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n}[k(k-1)+k]=\sum_{k=2}^{n} k(k-1)+\sum_{k=1}^{n} k .
$$

We know the answer for the second sum (it is $(n+1) n / 2$), so we concentrate on the first one:

$$
\sum_{k=2}^{n} k(k-1)=\sum_{k=2}^{n} \frac{k!}{(k-2)!}=2!\sum_{k=2}^{n} \frac{k!}{2!(k-2)!}=2!\sum_{k=2}^{n}\binom{k}{2}=2!\binom{n+1}{3}
$$

The final answer is
$2!\frac{(n+1)!}{3!(n-2)!}+\frac{(n+1) n}{2}=\frac{(n+1) n(n-1)}{3}+\frac{(n+1) n}{2}=\frac{(n+1) n}{6}(2 n-2+3)=\frac{(n+1) n(2 n+1)}{6}$.

