Lecture 16
 MATH-42021/52021 Graph Theory and Combinatorics.

Artem Zvavitch

Department of Mathematical Sciences, Kent State University

July, 2016.

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

An outstanding question WHY do we need it. WHY the name "generating". We will do our best to answers those questions, but first we need to see some examples and to learn some tricks.

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

An outstanding question WHY do we need it. WHY the name "generating". We will do our best to answers those questions, but first we need to see some examples and to learn some tricks.

Let $a_{k}=\binom{n}{k}$, i.e. consider a sequence of numbers (in this case number of ways to select k different objects out of n different objects):

$$
\binom{n}{0}, \quad\binom{n}{1}, \quad\binom{n}{2}, \ldots,\binom{n}{n-1},\binom{n}{n}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

An outstanding question WHY do we need it. WHY the name "generating". We will do our best to answers those questions, but first we need to see some examples and to learn some tricks.

Let $a_{k}=\binom{n}{k}$, i.e. consider a sequence of numbers (in this case number of ways to select k different objects out of n different objects):

$$
\binom{n}{0}, \quad\binom{n}{1}, \quad\binom{n}{2}, \ldots,\binom{n}{n-1}, \quad\binom{n}{n}
$$

Then the generating function for this sequence is

$$
g(x)=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n-1} x^{n-1}+\binom{n}{n} x^{n} .
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

An outstanding question WHY do we need it. WHY the name "generating". We will do our best to answers those questions, but first we need to see some examples and to learn some tricks.

Let $a_{k}=\binom{n}{k}$, i.e. consider a sequence of numbers (in this case number of ways to select k different objects out of n different objects):

$$
\binom{n}{0},\binom{n}{1}, \quad\binom{n}{2}, \ldots,\binom{n}{n-1},\binom{n}{n} .
$$

Then the generating function for this sequence is

$$
g(x)=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n-1} x^{n-1}+\binom{n}{n} x^{n} .
$$

Using Binomial theorem/formula we can write it in much more compact form $g(x)=(1+x)^{n}$.

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1,1, \quad 1, \ldots, 1,1
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1, \quad 1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1, \quad 1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n} .
$$

We can use a nice trick to write it in a compact form indeed for any natural number n :

$$
\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}\right)(1-x)
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1,1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n} .
$$

We can use a nice trick to write it in a compact form indeed for any natural number n :

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}\right)(1-x) \\
=1+x+x^{2}+\cdots+x^{n-1}+x^{n}-x-x^{2}-x^{3}-\cdots-x^{n}-x^{n+1}
\end{gathered}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1,1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n} .
$$

We can use a nice trick to write it in a compact form indeed for any natural number n :

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}\right)(1-x) \\
=1+x+x^{2}+\cdots+x^{n-1}+x^{n}-x-x^{2}-x^{3}-\cdots-x^{n}-x^{n+1} \\
=1-x^{n+1}
\end{gathered}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1,1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n}
$$

We can use a nice trick to write it in a compact form indeed for any natural number n :

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}\right)(1-x) \\
=1+x+x^{2}+\cdots+x^{n-1}+x^{n}-x-x^{2}-x^{3}-\cdots-x^{n}-x^{n+1} \\
=1-x^{n+1}
\end{gathered}
$$

and thus

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ then the generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let $a_{k}=1$, i.e. consider a sequence of length n, where each member is just a number 1 .

$$
1,1, \quad 1, \ldots, 1,1
$$

Then the generating function for this sequence is

$$
g(x)=1+x+x^{2}+\cdots+x^{n-1}+x^{n} .
$$

We can use a nice trick to write it in a compact form indeed for any natural number n :

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}\right)(1-x) \\
=1+x+x^{2}+\cdots+x^{n-1}+x^{n}-x-x^{2}-x^{3}-\cdots-x^{n}-x^{n+1} \\
=1-x^{n+1}
\end{gathered}
$$

and thus

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

Finally we get that the generating function we were looking for is $g(x)=\frac{1-x^{n+1}}{1-x}$.

Generating Functions

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

Generating Functions

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

For example if $x=1 / 2$ we get

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\left(\frac{1}{2}\right)}
$$

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

For example if $x=1 / 2$ we get

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\left(\frac{1}{2}\right)}
$$

Note that when n huge (i.e. $n \rightarrow \infty$) we get that $\left(\frac{1}{2}\right)^{n+1} \rightarrow 0$

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

For example if $x=1 / 2$ we get

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\left(\frac{1}{2}\right)}
$$

Note that when n huge (i.e. $n \rightarrow \infty$) we get that $\left(\frac{1}{2}\right)^{n+1} \rightarrow 0$ and thus

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{k-1}+\left(\frac{1}{2}\right)^{k}+\cdots=\frac{1}{1-\left(\frac{1}{2}\right)}=2
$$

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

For example if $x=1 / 2$ we get

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\left(\frac{1}{2}\right)}
$$

Note that when n huge (i.e. $n \rightarrow \infty$) we get that $\left(\frac{1}{2}\right)^{n+1} \rightarrow 0$ and thus

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{k-1}+\left(\frac{1}{2}\right)^{k}+\cdots=\frac{1}{1-\left(\frac{1}{2}\right)}=2
$$

In general, if $x \in(0,1)$ we get that

$$
1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

We just proved the formula for the sum of geometric progression, i.e. that for any n :

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

For example if $x=1 / 2$ we get

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\left(\frac{1}{2}\right)}
$$

Note that when n huge (i.e. $n \rightarrow \infty$) we get that $\left(\frac{1}{2}\right)^{n+1} \rightarrow 0$ and thus

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{k-1}+\left(\frac{1}{2}\right)^{k}+\cdots=\frac{1}{1-\left(\frac{1}{2}\right)}=2
$$

In general, if $x \in(0,1)$ we get that

$$
1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots
\end{gathered}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots \\
=\frac{1}{1-x^{2}}
\end{gathered}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots \\
=\frac{1}{1-x^{2}}
\end{gathered}
$$

Find the generating function for a sequence $0,1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=0$ and $a_{2 k+1}=1$.

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots \\
=\frac{1}{1-x^{2}}
\end{gathered}
$$

Find the generating function for a sequence $0,1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=0$ and $a_{2 k+1}=1$.

$$
g(x)=x+x^{3}+x^{5}+x^{7}+\cdots+x^{2 k+1}+x^{2 k+3}+\ldots
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots \\
=\frac{1}{1-x^{2}}
\end{gathered}
$$

Find the generating function for a sequence $0,1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=0$ and $a_{2 k+1}=1$.

$$
\begin{aligned}
& g(x)=x+x^{3}+x^{5}+x^{7}+\cdots+x^{2 k+1}+x^{2 k+3}+\ldots \\
& \quad=x\left(1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots\right)
\end{aligned}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=0$.

$$
\begin{gathered}
g(x)=1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots \\
=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3} \cdots+\left(x^{2}\right)^{k}+\left(x^{2}\right)^{k+1}+\ldots \\
=\frac{1}{1-x^{2}}
\end{gathered}
$$

Find the generating function for a sequence $0,1,0,1,0,1,0, \ldots$, i.e. $a_{2 k}=0$ and $a_{2 k+1}=1$.

$$
\begin{gathered}
g(x)=x+x^{3}+x^{5}+x^{7}+\cdots+x^{2 k+1}+x^{2 k+3}+\ldots \\
=x\left(1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 k}+x^{2 k+2}+\ldots\right) \\
=\frac{x}{1-x^{2}}
\end{gathered}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x} .
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

$$
g(x)=1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1}+\cdots
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

$$
\begin{gathered}
g(x)=1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1}+\ldots \\
1+(-x)+(-x)^{2}+(-x)^{3}+\cdots+(-x)^{2 k}+(-x)^{2 k+1}+\ldots
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

$$
\begin{gathered}
g(x)=1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1}+\ldots \\
1+(-x)+(-x)^{2}+(-x)^{3}+\cdots+(-x)^{2 k}+(-x)^{2 k+1}+\ldots \\
=\frac{1}{1-(-x)}
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

$$
\begin{gathered}
g(x)=1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1}+\ldots \\
1+(-x)+(-x)^{2}+(-x)^{3}+\cdots+(-x)^{2 k}+(-x)^{2 k+1}+\ldots \\
=\frac{1}{1-(-x)} \\
=\frac{1}{1+x}
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $1,-1,1,-1,1,-1, \ldots$, i.e. $a_{2 k}=1$ and $a_{2 k+1}=-1$.

$$
\begin{gathered}
g(x)=1-x+x^{2}-x^{3}+\cdots+x^{2 k}-x^{2 k+1}+\ldots \\
1+(-x)+(-x)^{2}+(-x)^{3}+\cdots+(-x)^{2 k}+(-x)^{2 k+1}+\ldots \\
=\frac{1}{1-(-x)} \\
=\frac{1}{1+x}
\end{gathered}
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x} .
$$

Generating Functions

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x} .
$$

Find the generating function for a sequence $a_{k}=a^{k}$, where a is some fixe number, i.e. sequence $1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots$.

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $a_{k}=a^{k}$, where a is some fixe number, i.e. sequence $1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots$.

$$
g(x)=1+a x+a^{2} x^{2}+a^{3} x^{3}+\cdots+a^{k} x^{k}+\ldots
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $a_{k}=a^{k}$, where a is some fixe number, i.e. sequence $1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots$.

$$
\begin{gathered}
g(x)=1+a x+a^{2} x^{2}+a^{3} x^{3}+\cdots+a^{k} x^{k}+\ldots \\
1+(a x)+(a x)^{2}+(a x)^{3}+\cdots+(a x)^{k}+\ldots
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $a_{k}=a^{k}$, where a is some fixe number, i.e. sequence $1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots$.

$$
\begin{gathered}
g(x)=1+a x+a^{2} x^{2}+a^{3} x^{3}+\cdots+a^{k} x^{k}+\ldots \\
1+(a x)+(a x)^{2}+(a x)^{3}+\cdots+(a x)^{k}+\ldots \\
=\frac{1}{1-(a x)}
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Find the generating function for a sequence $a_{k}=a^{k}$, where a is some fixe number, i.e. sequence $1, a, a^{2}, a^{3}, a^{4}, a^{5}, \ldots$.

$$
\begin{aligned}
& g(x)=1+a x+a^{2} x^{2}+a^{3} x^{3}+\cdots+a^{k} x^{k}+\ldots \\
& 1+(a x)+(a x)^{2}+(a x)^{3}+\cdots+(a x)^{k}+\ldots \\
& =\frac{1}{1-(a x)} \\
& =\frac{1}{1-a x}
\end{aligned}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!).

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots\right)
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots\right) \\
=1+x g(x)
\end{gathered}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots\right) \\
=1+x g(x)
\end{gathered}
$$

So we got an equation $g(x)=1+x g(x)$ we can now simply solve it for g :

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots\right) \\
=1+x g(x)
\end{gathered}
$$

So we got an equation $g(x)=1+x g(x)$ we can now simply solve it for g :

$$
g(x)-x g(x)=1
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots\right) \\
=1+x g(x)
\end{gathered}
$$

So we got an equation $g(x)=1+x g(x)$ we can now simply solve it for g :

$$
\begin{aligned}
& g(x)-x g(x)=1 \\
& g(x)(1-x)=1
\end{aligned}
$$

The generating function for infinite sequence of 1 is

$$
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots=\frac{1}{1-x}
$$

Another way to prove the formula (actually an example of how you can play with those functions!). Note

$$
\begin{gathered}
g(x)=1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\ldots \\
=1+x\left(1+x+x^{2}+\cdots+x^{k-1}+x^{k}+\cdots\right) \\
=1+x g(x)
\end{gathered}
$$

So we got an equation $g(x)=1+x g(x)$ we can now simply solve it for g :

$$
\begin{aligned}
& g(x)-x g(x)=1 \\
& g(x)(1-x)=1
\end{aligned}
$$

Finally $g(x)=\frac{1}{1-x}$.

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots
$$

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right)
\end{gathered}
$$

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Find the generating function for a sequence $7,7,7,7,7, \ldots$, i.e. $b_{k}=7$.

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Find the generating function for a sequence $7,7,7,7,7, \ldots$, i.e. $b_{k}=7$.
It is easy to notice that $b_{k}=7 \times 1$,

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Find the generating function for a sequence $7,7,7,7,7, \ldots$, i.e. $b_{k}=7$.
It is easy to notice that $b_{k}=7 \times 1$, or $b_{k}=7 a_{k}$,

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Find the generating function for a sequence $7,7,7,7,7, \ldots$, i.e. $b_{k}=7$.
It is easy to notice that $b_{k}=7 \times 1$, or $b_{k}=7 a_{k}$, where a_{k} is a sequence of 1 .

Scaling

Assume that $G(x)$ is the generating function for a sequence a_{k} and c is some fixed number. Then $c G(x)$ is a generating function for a sequence $c a_{k}$.

Indeed, let us simply compute the generating function for $c a_{0}, c a_{1}, c a_{2}, \ldots, c a_{k}, \ldots$

$$
\begin{gathered}
c a_{0}+c a_{1} x+c a_{2} x^{2}+\cdots+c a_{k} x^{k}+\ldots \\
=c\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=c G(x)
\end{gathered}
$$

Find the generating function for a sequence $7,7,7,7,7, \ldots$, i.e. $b_{k}=7$.
It is easy to notice that $b_{k}=7 \times 1$, or $b_{k}=7 a_{k}$, where a_{k} is a sequence of 1 . Thus $G(x)=\frac{7}{1-x}$.

Addition

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ and $F(x)$ is the generating function for a sequence $b_{0}, b_{1}, b_{2}, \ldots$. Then $G(x)+F(x)$ is the generating function for a sequence $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Addition

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ and $F(x)$ is the generating function for a sequence $b_{0}, b_{1}, b_{2}, \ldots$. Then $G(x)+F(x)$ is the generating function for a sequence $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Indeed, let us simply compute the generating function for $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Addition

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ and $F(x)$ is the generating function for a sequence $b_{0}, b_{1}, b_{2}, \ldots$. Then $G(x)+F(x)$ is the generating function for a sequence $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Indeed, let us simply compute the generating function for $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

$$
\left(a_{0}+b_{0}\right)+\left(a_{1}+a_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{k}+b_{k}\right) x^{k}+\ldots
$$

Addition

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ and $F(x)$ is the generating function for a sequence $b_{0}, b_{1}, b_{2}, \ldots$. Then $G(x)+F(x)$ is the generating function for a sequence $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Indeed, let us simply compute the generating function for $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

$$
\begin{gathered}
\left(a_{0}+b_{0}\right)+\left(a_{1}+a_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{k}+b_{k}\right) x^{k}+\ldots \\
=\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{k} x^{k}+\ldots\right)
\end{gathered}
$$

Addition

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ and $F(x)$ is the generating function for a sequence $b_{0}, b_{1}, b_{2}, \ldots$. Then $G(x)+F(x)$ is the generating function for a sequence $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

Indeed, let us simply compute the generating function for $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots$

$$
\begin{gathered}
\left(a_{0}+b_{0}\right)+\left(a_{1}+a_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{k}+b_{k}\right) x^{k}+\ldots \\
=\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{k} x^{k}+\ldots\right) \\
=G(x)+F(x) .
\end{gathered}
$$

Operations with Generating Functions

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$.

Operations with Generating Functions

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots
$$

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right)
\end{gathered}
$$

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Operations with Generating Functions

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0,}_{m \text { times }} a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$.

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0,}_{m \text { times }} a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$.
We notice that this sequence can be written as a sum of two sequences $7,7,7,7,7,0,0,0,0, \ldots$ and $0,0,0,0,0,1,1,1,1 \ldots$

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0,}_{m \text { times }} a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$.
We notice that this sequence can be written as a sum of two sequences $7,7,7,7,7,0,0,0,0, \ldots$ and $0,0,0,0,0,1,1,1,1 \ldots$ The first sequence has generating function $F_{1}(x)=7+7 x+7 x^{2}+7 x^{3}+7 x^{4}$.

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$.
We notice that this sequence can be written as a sum of two sequences $7,7,7,7,7,0,0,0,0, \ldots$ and $0,0,0,0,0,1,1,1,1 \ldots$. The first sequence has generating function $F_{1}(x)=7+7 x+7 x^{2}+7 x^{3}+7 x^{4}$. The second generating function we compute using that it is the right shift by 5 of sequence $1,1,1,1 \ldots$

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$.
We notice that this sequence can be written as a sum of two sequences $7,7,7,7,7,0,0,0,0, \ldots$ and $0,0,0,0,0,1,1,1,1 \ldots$. The first sequence has generating function $F_{1}(x)=7+7 x+7 x^{2}+7 x^{3}+7 x^{4}$. The second generating function we compute using that it is the right shift by 5 of sequence $1,1,1,1 \ldots$ (for which the generating function is $1 /(1-x)$), thus $F_{2}(x)=x^{5} /(1-x)$

Operations with Generating Functions

Right Shift

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$. What can we say about generating function of sequence

$$
\underbrace{0,0, \ldots, 0}_{m \text { times }}, a_{0}, a_{1}, a_{2}, \ldots ?
$$

Again, let us simply compute the generating function for this new sequence, we notice that the first m coefficients are zeros (just by definition!) and thus the generating function is

$$
\begin{gathered}
a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots+a_{k} x^{k+m}+\ldots \\
=x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\ldots\right) \\
=x^{m} G(x)
\end{gathered}
$$

Find the generating function of a sequence $7,7,7,7,7,1,1,1,1,1,1,1,1, \ldots$
We notice that this sequence can be written as a sum of two sequences $7,7,7,7,7,0,0,0,0, \ldots$ and $0,0,0,0,0,1,1,1,1 \ldots$ The first sequence has generating function $F_{1}(x)=7+7 x+7 x^{2}+7 x^{3}+7 x^{4}$. The second generating function we compute using that it is the right shift by 5 of sequence $1,1,1,1 \ldots$ (for which the generating function is $1 /(1-x)$), thus $F_{2}(x)=x^{5} /(1-x)$ and the final answer is

$$
G(x)=7+7 x+7 x^{2}+7 x^{3}+7 x^{4}+\frac{x^{5}}{1-x} .
$$

Derivative Generating Functions

We know that

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\frac{1}{1-x}
$$

We know that

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\frac{1}{1-x}
$$

Take the derivative from both sides, i.e.

$$
\frac{d}{d x}\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\ldots\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)
$$

We know that

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\frac{1}{1-x}
$$

Take the derivative from both sides, i.e.

$$
\frac{d}{d x}\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\ldots\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)
$$

Now do standard computations:

$$
1+2 x+3 x^{2} \cdots+(n-1) x^{n-2}+n x^{n-1}+\cdots=\frac{1}{(1-x)^{2}}
$$

We know that

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\frac{1}{1-x}
$$

Take the derivative from both sides, i.e.

$$
\frac{d}{d x}\left(1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\ldots\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)
$$

Now do standard computations:

$$
1+2 x+3 x^{2} \cdots+(n-1) x^{n-2}+n x^{n-1}+\cdots=\frac{1}{(1-x)^{2}}
$$

Assume that $G(x)$ is the generating function for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ Then $\frac{d}{d x} G(x)$ is a generating function of

$$
a_{1}, 2 a_{2}, \ldots, k a_{k}, \ldots
$$

Example

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$

Example

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for. Lets, correct it.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for. Lets, correct it. We need to shift the sequence one step to the right.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for. Lets, correct it. We need to shift the sequence one step to the right. The generating function of $0,1,2,3,4, \ldots, k, \ldots$ is $\times \frac{d}{d x}\left(\frac{1}{1-x}\right)$.

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for. Lets, correct it. We need to shift the sequence one step to the right. The generating function of $0,1,2,3,4, \ldots, k, \ldots$ is $x \frac{d}{d x}\left(\frac{1}{1-x}\right)$. Now take apply the derivative trick to get that the generating function of $1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots, k^{2}, \ldots$ is $\frac{d}{d x}\left(x \frac{d}{d x}\left(\frac{1}{1-x}\right)\right)$,

Find generating function of the sequence $1,4,9,16, \ldots, k^{2}, \ldots$
We know that the generating function for $1,1,1, \ldots$ is $1 /(1-x)$. Then the generating function for $1,2,3,4, \ldots, k, \ldots$ is $\frac{d}{d x}\left(\frac{1}{1-x}\right)$. NOTE, that if apply the derivative formula from above directly we will get the generating function for $2,2 \times 3,3 \times 4, \ldots,(k-1) k, \ldots$. This is NOT what we were looking for. Lets, correct it. We need to shift the sequence one step to the right. The generating function of $0,1,2,3,4, \ldots, k, \ldots$ is $x \frac{d}{d x}\left(\frac{1}{1-x}\right)$. Now take apply the derivative trick to get that the generating function of $1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots, k^{2}, \ldots$ is $\frac{d}{d x}\left(x \frac{d}{d x}\left(\frac{1}{1-x}\right)\right)$, so

$$
\begin{aligned}
G(x)=\frac{d}{d x}\left(x \frac{d}{d x}\left(\frac{1}{1-x}\right)\right)= & \frac{d}{d x}\left(\frac{x}{(1-x)^{2}}\right)=\left(\frac{(1-x)^{2}+2 x(1-x)}{(1-x)^{4}}\right) \\
& =\frac{1+x}{(1-x)^{3}}
\end{aligned}
$$

