Lecture 17
 MATH-42021/52021 Graph Theory and Combinatorics.

Artem Zvavitch

Department of Mathematical Sciences, Kent State University

July, 2016.

Consider a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. The generating function $g(x)$ is a polynomial defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Note that we also can consider an infinite sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$. Then the generating function $g(x)$ is a series which is defined as

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences:

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $\quad b_{n}=a_{n-1}$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2} \quad$ AND $0,1,0,0, \ldots$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$ AND $0,1,0,0, \ldots$ i.e. the sum of

$$
\begin{gathered}
0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \\
0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots \\
0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$ AND $0,1,0,0, \ldots$ i.e. the sum of

$$
\begin{gathered}
0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \\
0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots \\
0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

But the generating function of the first sequence is $x G(x)$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$ AND $0,1,0,0, \ldots$ i.e. the sum of

$$
\begin{gathered}
0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \\
0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots \\
0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

But the generating function of the first sequence is $x G(x)$ and the generating function of the second is $x^{2} G(x)$ and the third is just x.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$ AND $0,1,0,0, \ldots$ i.e. the sum of

$$
\begin{gathered}
0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \\
0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots \\
0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

But the generating function of the first sequence is $x G(x)$ and the generating function of the second is $x^{2} G(x)$ and the third is just x. So we get

$$
G(x)=x^{2} G(x)+x G(x)+x
$$

OR

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

l.e. $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

It is very interesting to find a formula for those numbers. Lets try to do it. Let $G(x)$ be the generating function for our sequence. Note that if we apply the rule $a_{n}=a_{n-1}+a_{n-2}$ we get that a_{n} is a sum of TREE sequences: $b_{n}=a_{n-1}$ and $c_{n}=a_{n-2}$ AND $0,1,0,0, \ldots$ i.e. the sum of

$$
\begin{gathered}
0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \\
0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots \\
0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

But the generating function of the first sequence is $x G(x)$ and the generating function of the second is $x^{2} G(x)$ and the third is just x. So we get

$$
G(x)=x^{2} G(x)+x G(x)+x
$$

OR

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}} x\right)^{1-} ~ . ~}\right.
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}} x\right)^{1-} ~ . ~}\right.
$$

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral).

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}} x\right)}\right]
$$

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is a clever guess.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}} x\right)}\right]
$$

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is a clever guess. You write that

$$
\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{A}{x+\frac{1+\sqrt{5}}{2}}+\frac{B}{x+\frac{1-\sqrt{5}}{2}} .
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}} x\right)}\right]
$$

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is a clever guess. You write that

$$
\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{A}{x+\frac{1+\sqrt{5}}{2}}+\frac{B}{x+\frac{1-\sqrt{5}}{2}} .
$$

Next you simply the right-hand side (just add up the fraction) compare the numerator to the numerator of the left-hand side and find A and B.

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}} .
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}^{2}} x\right.}\right]
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}} .
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-{\frac{2}{1+\sqrt{5}^{5}} x}^{1-}\right] ~ . ~}\right.
$$

But we can now use $1 /(1-t)=1+t+t^{2}+\ldots$ to get that

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-{\frac{2}{1+\sqrt{5}^{5}} x}^{1-}\right] ~ . ~}\right.
$$

But we can now use $1 /(1-t)=1+t+t^{2}+\ldots$ to get that

$$
\frac{1}{1-\frac{2}{\sqrt{5}-1} x}=1+\left(\frac{2}{\sqrt{5}-1} x\right)+\left(\frac{2}{\sqrt{5}-1} x\right)^{2}+\left(\frac{2}{\sqrt{5}-1} x\right)^{3}+\cdots+\left(\frac{2}{\sqrt{5}-1} x\right)^{n}+\ldots
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}^{5}} x\right.}\right]
$$

But we can now use $1 /(1-t)=1+t+t^{2}+\ldots$ to get that

$$
\begin{aligned}
& \frac{1}{1-\frac{2}{\sqrt{5}-1} x}=1+\left(\frac{2}{\sqrt{5}-1} x\right)+\left(\frac{2}{\sqrt{5}-1} x\right)^{2}+\left(\frac{2}{\sqrt{5}-1} x\right)^{3}+\cdots+\left(\frac{2}{\sqrt{5}-1} x\right)^{n}+\ldots \\
& \frac{1}{1-\left(-\frac{2}{\sqrt{5}+1} x\right)}=1-\left(\frac{2}{\sqrt{5}+1} x\right)+\left(\frac{2}{\sqrt{5}+1} x\right)^{2}+\left(\frac{2}{\sqrt{5}+1} x\right)^{3}+\cdots+\left(\frac{-2}{\sqrt{5}+1} x\right)^{n}+\ldots
\end{aligned}
$$

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence: $a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$.

We have found the Generating Function

$$
G(x)=\frac{x}{1-x-x^{2}}
$$

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

$$
x^{2}+x-1=\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) .
$$

and

$$
G(x)=-\frac{x}{\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}=\frac{1}{\sqrt{5}}\left[\frac{1}{1-\frac{2}{\sqrt{5}-1} x}-\frac{1}{1-\left(-\frac{2}{1+\sqrt{5}^{5}} x\right.}\right]
$$

But we can now use $1 /(1-t)=1+t+t^{2}+\ldots$ to get that

$$
\begin{aligned}
& \frac{1}{1-\frac{2}{\sqrt{5}-1} x}=1+\left(\frac{2}{\sqrt{5}-1} x\right)+\left(\frac{2}{\sqrt{5}-1} x\right)^{2}+\left(\frac{2}{\sqrt{5}-1} x\right)^{3}+\cdots+\left(\frac{2}{\sqrt{5}-1} x\right)^{n}+\ldots \\
& \frac{1}{1-\left(-\frac{2}{\sqrt{5}+1} x\right)}=1-\left(\frac{2}{\sqrt{5}+1} x\right)+\left(\frac{2}{\sqrt{5}+1} x\right)^{2}+\left(\frac{2}{\sqrt{5}+1} x\right)^{3}+\cdots+\left(\frac{-2}{\sqrt{5}+1} x\right)^{n}+\ldots
\end{aligned}
$$

SO

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{2}{\sqrt{5}-1}\right)^{n}-\left(\frac{-2}{\sqrt{5}+1}\right)^{n}\right]
$$

Ideological Example

Is there any combinatorial use of coefficient of x^{5} in $\left(1+x+x^{2}\right)^{4}$.

Is there any combinatorial use of coefficient of x^{5} in $\left(1+x+x^{2}\right)^{4}$.
Note that

$$
\left(1+x+x^{2}\right)^{4}=\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)
$$

You need to SELECT 1 OR x or x^{2} from each of the parenthesis and get in the product x^{5}.

Is there any combinatorial use of coefficient of x^{5} in $\left(1+x+x^{2}\right)^{4}$.
Note that

$$
\left(1+x+x^{2}\right)^{4}=\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)
$$

You need to SELECT 1 OR x or x^{2} from each of the parenthesis and get in the product x^{5}. Assume you picked $x^{1 / 1}$ from the first, $x^{/ 2}$ from the second, $x^{1 / 3}$ from the third and x^{14} from the forth.

Is there any combinatorial use of coefficient of x^{5} in $\left(1+x+x^{2}\right)^{4}$.
Note that

$$
\left(1+x+x^{2}\right)^{4}=\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)
$$

You need to SELECT 1 OR x or x^{2} from each of the parenthesis and get in the product x^{5}. Assume you picked $x^{1 / 1}$ from the first, $x^{/ 2}$ from the second, $x^{1 / 3}$ from the third and $x^{l_{4}}$ from the forth. Then you get $x^{l_{1}+l_{2}+l_{3}+l_{4}}$, where each l_{i} is $0,1,2$ and $I_{1}+I_{2}+I_{3}+I_{4}=5$.

Is there any combinatorial use of coefficient of x^{5} in $\left(1+x+x^{2}\right)^{4}$.
Note that

$$
\left(1+x+x^{2}\right)^{4}=\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)
$$

You need to SELECT 1 OR x or x^{2} from each of the parenthesis and get in the product x^{5}. Assume you picked $x^{1 / 1}$ from the first, $x^{/ 2}$ from the second, $x^{1 / 3}$ from the third and $x^{l_{4}}$ from the forth. Then you get $x^{l_{1}+l_{2}+l_{3}+l_{4}}$, where each l_{i} is $0,1,2$ and $I_{1}+l_{2}+l_{3}+l_{4}=5$. SO THE COEFFICIENT OF x^{5} IS EXACTLY THE NUMBER OF SOLUTIONS OF $I_{1}+l_{2}+l_{3}+l_{4}=5$, where each l_{i} can be $0,1,2$.

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3-green; 3- white, 3-blue, 3-red.

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3-green; 3-white, 3-blue, 3-red.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red.

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3-green; 3-white, 3-blue, 3-red.

Solution: Let I_{1}-be the number of green ball, we select; I_{2}-white; I_{3}-blue; I_{4}-red. Then

$$
I_{1}+I_{2}+I_{3}+I_{4}=n \text { and } I_{1}, I_{2}, I_{3}, I_{4} \in\{0,1,2,3\} .
$$

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3-green; 3-white, 3-blue, 3-red.

Solution: Let I_{1}-be the number of green ball, we select; I_{2}-white; I_{3}-blue; I_{4}-red. Then

$$
I_{1}+I_{2}+I_{3}+I_{4}=n \text { and } I_{1}, I_{2}, I_{3}, I_{4} \in\{0,1,2,3\} .
$$

Thus a_{n} is simply the coefficient of $x^{l_{1}+l_{2}+l_{3}+l_{4}}=x^{n}$ in $\left(1+x+x^{2}+x^{3}\right)^{4}$

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3-green; 3-white, 3-blue, 3-red.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red. Then

$$
I_{1}+I_{2}+I_{3}+I_{4}=n \text { and } I_{1}, I_{2}, I_{3}, I_{4} \in\{0,1,2,3\} .
$$

Thus a_{n} is simply the coefficient of $x^{1_{1}+l_{2}+l_{3}+l_{4}}=x^{n}$ in $\left(1+x+x^{2}+x^{3}\right)^{4}$ and the generating function we are looking for is

$$
G(x)=\left(1+x+x^{2}+x^{3}\right)^{4} .
$$

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3 -green; 4-white, 5 -blue, 2 -red, 7 - yellow. But there is also a restriction, the number of white balls must be even; the number of yellow balls must be odd.

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3 -green; 4-white, 5 -blue, 2 -red, 7 - yellow. But there is also a restriction, the number of white balls must be even; the number of yellow balls must be odd.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red; 15-yellow.

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3 -green; 4-white, 5 -blue, 2-red, 7 - yellow. But there is also a restriction, the number of white balls must be even; the number of yellow balls must be odd.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red; 1_{5}-yellow. Then

$$
l_{1}+l_{2}+l_{3}+l_{4}+l_{5}=n
$$

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3 -green; 4-white, 5 -blue, 2-red, 7 - yellow. But there is also a restriction, the number of white balls must be even; the number of yellow balls must be odd.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red; l_{5}-yellow. Then

$$
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}=n
$$

and

$$
I_{1} \in\{0,1,2,3\} ; I_{2} \in\{0,2,4\} ; I_{3} \in\{0,1,2,3,4,5\} ; I_{4} \in\{0,1,2\} ; I_{3} \in\{1,3,5,7\}
$$

Find the generating function for a_{n} - the number of ways to select n balls from a pile of 3 -green; 4-white, 5 -blue, 2-red, 7 - yellow. But there is also a restriction, the number of white balls must be even; the number of yellow balls must be odd.

Solution: Let l_{1}-be the number of green ball, we select; l_{2}-white; l_{3}-blue; l_{4}-red; l_{5}-yellow. Then

$$
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}=n
$$

and

$$
I_{1} \in\{0,1,2,3\} ; I_{2} \in\{0,2,4\} ; l_{3} \in\{0,1,2,3,4,5\} ; I_{4} \in\{0,1,2\} ; I_{3} \in\{1,3,5,7\}
$$

Thus the generating function is
$G(x)=\left(1+x+x^{2}+x^{3}\right)\left(1+x^{2}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x+x^{2}\right)\left(x+x^{3}+x^{5}+x^{7}\right)$.

Example

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)
$$

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)
$$

Now, the question what will be the coefficient of x^{n} in this product?

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)
$$

Now, the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{l_{1}} x^{I_{2}}$ such that $l_{1}+I_{2}=n$.

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)
$$

Now, the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{l_{1}} x^{I_{2}}$ such that $I_{1}+l_{2}=n$. In how many way we can select I_{1} and I_{2} ?

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{2}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\frac{1}{(1-x)^{2}}=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots\right)
$$

Now, the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{I_{1}} x^{I_{2}}$ such that $l_{1}+l_{2}=n$. In how many way we can select l_{1} and I_{2} ? This a problem with "divider" put n sticks and select where to put one divider you have $\binom{n+1}{1}$ options. So

$$
a_{n}=\binom{n+1}{1}
$$

Example

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\begin{gathered}
\frac{1}{(1-x)^{k}} \\
=\underbrace{\left(1+x+x^{2}+x^{3}+\ldots\right) \ldots\left(1+x+x^{2}+x^{3}+\ldots\right)}_{k \text { times }}
\end{gathered}
$$

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\begin{gathered}
\frac{1}{(1-x)^{k}} \\
=\underbrace{\left(1+x+x^{2}+x^{3}+\ldots\right) \ldots\left(1+x+x^{2}+x^{3}+\ldots\right)}_{k \text { times }}
\end{gathered}
$$

Now the question what will be the coefficient of x^{n} in this product?

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\begin{gathered}
\frac{1}{(1-x)^{k}} \\
=\underbrace{\left(1+x+x^{2}+x^{3}+\ldots\right) \ldots\left(1+x+x^{2}+x^{3}+\ldots\right)}_{k \text { times }}
\end{gathered}
$$

Now the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{l_{1}} x^{l_{2}} \ldots x^{l_{k}}$ such that $I_{1}+l_{2}+\cdots+I_{k}=n$.

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\begin{gathered}
\frac{1}{(1-x)^{k}} \\
=\underbrace{\left(1+x+x^{2}+x^{3}+\ldots\right) \ldots\left(1+x+x^{2}+x^{3}+\ldots\right)}_{k \text { times }}
\end{gathered}
$$

Now the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{I_{1}} x^{I_{2}} \ldots x^{I_{k}}$ such that $I_{1}+I_{2}+\cdots+I_{k}=n$. In how many way we can select $I_{1}, I_{2}, \ldots, I_{k}$?

Find the coefficient a_{n} (i.e. the coefficient of x^{n}) in generating function $\frac{1}{(1-x)^{k}}$.
Solution: We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots
$$

thus

$$
\begin{gathered}
\frac{1}{(1-x)^{k}} \\
=\underbrace{\left(1+x+x^{2}+x^{3}+\ldots\right) \ldots\left(1+x+x^{2}+x^{3}+\ldots\right)}_{k \text { times }}
\end{gathered}
$$

Now the question what will be the coefficient of x^{n} in this product? To get x^{n} you need to multiply $x^{l_{1}} x^{I_{2}} \ldots x^{I_{k}}$ such that $I_{1}+I_{2}+\cdots+I_{k}=n$. In how many way we can select $I_{1}, l_{2}, \ldots, I_{k}$? This (again) a problem with "divider" put n sticks and select where to put $k-1$ dividers - you have $\binom{n+k-1}{k-1}$ options.

$$
a_{n}=\binom{n+k-1}{k-1}
$$

