Lecture 17

MATH-42021/52021 Graph Theory and Combinatorics.

Artem Zvavitch

Department of Mathematical Sciences, Kent State University

August, 2018.



Generating Functions

Consider a sequence of numbers ap, a1, az,...,an. The generating function g(x) is a
polynomial defined as

g(x)= ap+ a1 x + apx®+ -+ apx".

Note that we also can consider an infinite sequence of numbers ag, a1, as,...,an,....
Then the generating function g(x) is a series which is defined as

g(x)=ao+arx+ax®+- Fanx"+....
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, . ..
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, . ..

le. 30 =0,a =1and a,=a,_1+ap_».
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, . ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers.
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, . ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it.
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence.

Artem Zvavitch Lecture 17, MATH-42021/52021 Graph Theory and Combinatorics.



Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences:
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, = a,_1
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, = ap—2
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—» AND 0,1,0,0,...
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—> AND 0,1,0,0,... i.e. the sum of

0,a0,a1,a2,a3,a4...

0,0,a0, a1, a2, a3, ...
0,1,0,0,0,0,0, ...
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—> AND 0,1,0,0,... i.e. the sum of

0,a0,a1,a2,a3,a4...

0,0,a0, a1, a2, a3, ...
0,1,0,0,0,0,0, ...

But the generating function of the first sequence is xG(x)
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—> AND 0,1,0,0,... i.e. the sum of

0,a0,a1,a2,a3,a4...

0,0,a0,a1,a2,as,...

0,1,0,0,0,0,0, ...
But the generating function of the first sequence is xG(x) and the generating function of the
second is x2G(x) and the third is just x.
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—> AND 0,1,0,0,... i.e. the sum of

0,a0,a1,a2,a3,a4...
0,0,a0, a1, a2, a3, ...
0,1,0,0,0,0,0, ...

But the generating function of the first sequence is xG(x) and the generating function of the
second is x2G(x) and the third is just x. So we get

G(x) = x*G(x) + xG(x) + x
OR
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Super Cool Application

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence:
0,1,1,2,3,5,8,13,21,34,55,89,144, ..

le. 30 =0,a =1and a,=a,_1+ap_».

It is very interesting to find a formula for those numbers. Lets try to do it. Let G(x) be the
generating function for our sequence. Note that if we apply the rule a, = a,—1 + a,—2» we get that
ap is a sum of TREE sequences: b, =a,—1 and ¢, =a,—> AND 0,1,0,0,... i.e. the sum of

0,a0,a1,a2,a3,a4...
0,0,a0, a1, a2, a3, ...
0,1,0,0,0,0,0, ...

But the generating function of the first sequence is xG(x) and the generating function of the
second is x2G(x) and the third is just x. So we get

G(x) = x*G(x) + xG(x) + x
OR
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Super Cool Applicati

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci J

sequence: ag =0, a; =1 and a, =a,—-1+ap—2.

We have found the Generating Function

Now we need to decompose the above into a series.
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci J

sequence: ag =0, a; =1 and a, =a,—-1+ap—2.

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
)x +

Ve

X 4x—1=(x+
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Super Cool Applicati

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,—-1+ap—2. J

We have found the Generating Function
x

G(x) = ——.
1—x—x2

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
+—)x+ . )

X2 x—1=(x

and

Artem Zvavitch Lecture 17, MATH-42021/52021 Graph Theory and Combinat:



Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,—-1+ap—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
+—)x+ —).
2 2

and
) x 1 1 1
T A 1. s |12 Tl 2
1 \/5) V5|1 vt 1—( el

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral).

)
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,—-1+ap—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
+—)x+ ——).
2 2
and
x 1 1 1
) A B, VB 1= —Z—x 1 2
(et B2+ 522) v e wey )

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is
a clever guess.
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,—-1+ap—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
+—)x+ ——).
2 2
and
x 1 1 1
) A B, VB 1= —Z—x 1 2
(et B2+ 522) v e wey )

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is
a clever guess. You write that
x A B

= + .
(x+ 71+2\/5)(x+ 71*2\/5) X+ 7”2‘/5 el B ’2‘/5
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,—-1+ap—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+V5 1—-V5
+—)x+ ——).
2 2
and
x 1 1 1
) A B, VB 1= —Z—x 1 2
(et B2+ 522) v e wey )

The above is the standard technical trick used a lot in math (especially calculus when you need to compute integral). More or less, it is
a clever guess. You write that
x A B

= + .
(x+ 71+2\/5)(x+ 71*2\/5) X+ 7”2‘/5 el B ’2‘/5

Next you simply the right-hand side (just add up the fraction) compare the numerator to the numerator of the left-hand side and find A

and B.
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,-1+an—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+5 1—5
+ )(X+T)

and

(x)=—————""¥77"""7¥¥#68Z8+ = — —
NS EV 1—2\/5) V5 17\/;_1>< 17(7”2\/5@
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,-1+an—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

5 1+V5 1-5
1= (x+ )(X+T).

and

G(X):*—f:* 5
(ot B8 18 VB | 1

X 1—(—

2 X
VE—1 1+v5

But we can now use 1/(1 — t) = 1+ t+t2 4+ ... to get that
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Super Cool Applicatio

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,-1+an—2. J

We have found the Generating Function

1—x—

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

1+5 1—5
+ ).

2 )x +
2
and
60) X 1 1 1
A e R . o — 2 T2
(X+1+T\/§)(X+#) V5|1 1> 1—( 1+\/5)

But we can now use 1/(1 — t) = 1+ t+t2 4+ ... to get that

1 - 2 2 2 2 3 2 "
. > X— + \/§,1X + \/§,1X + \/§,1X qpoocodr 7\/§71x +
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Super Cool Applicati

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,-1+an—2. J

We have found the Generating Function
X
G(x) = .
1—x—x2

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

5 1+V5 1-5
1= (x+ )(x+ p D

(x)=—————""¥77"""7¥¥#68Z8+ = —
(et LB x4 L 2

But we can now use 1/(1 — t) = 1+ t+t2 4+ ... to get that

1 - 2 2 2 2 g 2 n
1— —2—x * o1 * o1 * i1 o io1 *

VE—1

1 2 2 2 2 g =5 n
—_— 1 x|+ x| + x| 4o+ x| +
1—(——2—x) VE+1 VE+1 VE+1 VE+1

RV

Artem Zvavitch Lecture 17, MATH-42021/52021 Graph Theory and Combinat:



Super Cool Applicati

Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci
sequence: ag =0, a; =1 and a, =a,-1+an—2. J

We have found the Generating Function
X
G(x) = .
1—x—x2

Now we need to decompose the above into a series. Note that, solving quadratic equation we get

5 1+V5 1-5
1= (x+ )(x+ p D

(x)=—————""¥77"""7¥¥#68Z8+ = —
(et LB x4 L 2

But we can now use 1/(1 — t) = 1+ t+t2 4+ ... to get that

1 - 2 2 2 2 g 2 n
. > X— + \/§,1X + \/§,1X + \/§,1X Jrooodk \/§,1X qFooo

VE—1

1 2 2 2 2 g =5 n
= T\ \Em) T\ ot s
=T

1 2 n —2 \"
= Vo1 o1
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Ideological Example

Is there any combinatorial use of coefficient of x° in (1 + x + x?)*. J
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Ideological Example

Is there any combinatorial use of coefficient of x° in (1 + x + x?)*. J

Note that
(14+x4+x3)* =1+ x+x2)(1+x+x2)(1+x+x2)(1+x+x3)

You need to SELECT 1 OR x or x2 from each of the parenthesis and get in the
product x°.
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Ideological Example

Is there any combinatorial use of coefficient of x° in (1 + x + x?)*. J

Note that
(14+x4+x3)* =1+ x+x2)(1+x+x2)(1+x+x2)(1+x+x3)

You need to SELECT 1 OR x or x2 from each of the parenthesis and get in the
product x%.  Assume you picked x from the first, x? from the second, x3 from the
third and x* from the forth.
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Ideological Example

Is there any combinatorial use of coefficient of x° in (1 + x + x?)*. J

Note that
(14+x4+x3)* =1+ x+x2)(1+x+x2)(1+x+x2)(1+x+x3)

You need to SELECT 1 OR x or x2 from each of the parenthesis and get in the
product x%.  Assume you picked x from the first, x? from the second, x3 from the
third and x’ from the forth. Then you get xit2t5+k where each /; is 0,1,2 and
h+h+hB+1ly=5.
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Ideological Example

Is there any combinatorial use of coefficient of x° in (1 + x + x?)*. J

Note that
(14+x4+x3)* =1+ x+x2)(1+x+x2)(1+x+x2)(1+x+x3)

You need to SELECT 1 OR x or x2 from each of the parenthesis and get in the
product x%.  Assume you picked x from the first, x? from the second, x3 from the
third and x’ from the forth. Then you get xiT2t5+k4 where each /; is 0,1,2 and
h+h+hk+Il=5 SO THE COEFFICIENT OF x> IS EXACTLY THE NUMBER OF
SOLUTIONS OF /i +h + k5 + Iy =5, where each /; can be 0,1,2.
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 3- white, 3—blue, 3—red. J
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 3- white, 3—blue, 3—red. J

Solution: Let /1-be the number of green ball, we select; h-white; —blue; l4—red.
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 3- white, 3—blue, 3—red. J

Solution: Let /1-be the number of green ball, we select; h-white; —blue; ls—red. Then

h+h+hk+Il4=nand I17l2al37l4 S {0717273}
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 3- white, 3—blue, 3—red. J

Solution: Let /1-be the number of green ball, we select; h-white; —blue; ls—red. Then
h+h+hk+Il4=nand I17l2al37l4 S {0717273}

Thus a, is simply the coefficient of xiT2th+h — 5 in (14 x +x2 +x3)*
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 3- white, 3—blue, 3—red. J

Solution: Let /1-be the number of green ball, we select; h-white; —blue; ls—red. Then
h+h+hk+Il4=nand I17l2al37l4 S {0717273}

Thus a, is simply the coefficient of x1T2th+h = xn jn (L+x+x2+x3)* and the
generating function we are looking for is

G(x)=(1 +x+x? +X3)4.
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 4- white, 5-blue, 2—red, 7— yellow. But there is also a restriction, the
number of white balls must be even; the number of yellow balls must be odd.
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 4- white, 5-blue, 2—red, 7— yellow. But there is also a restriction, the
number of white balls must be even; the number of yellow balls must be odd.

Solution: Let /1-be the number of green ball, we select; h-white; s—blue; ls—red;
Is-yellow.
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 4- white, 5-blue, 2—red, 7— yellow. But there is also a restriction, the
number of white balls must be even; the number of yellow balls must be odd.

Solution: Let /1-be the number of green ball, we select; h-white; s—blue; ls—red;
Is-yellow. Then
h+hb+B+h+l=n
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 4- white, 5-blue, 2—red, 7— yellow. But there is also a restriction, the
number of white balls must be even; the number of yellow balls must be odd.

Solution: Let /1-be the number of green ball, we select; h-white; s—blue; ls—red;
Is-yellow. Then
h+hb+B+h+l=n

and

/1 € {0717273};l2 € {07274}; /3 € {07172737475};/4 € {07172};l3 € {1737577}
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Find the generating function for a,— the number of ways to select n balls from a pile
of 3-green; 4- white, 5-blue, 2—red, 7— yellow. But there is also a restriction, the
number of white balls must be even; the number of yellow balls must be odd.

Solution: Let /1-be the number of green ball, we select; h-white; s—blue; ls—red;
Is-yellow. Then

h+hb+B+h+l=n

and

/1 € {0717273};l2 € {07274}; /3 € {07172737475};/4 € {07172};l3 € {1737577}

Thus the generating function is

G(x) = (14+x+x2+x3) 1+ X2 +xH (1 +x+x2+x3+x* +x3) 1+ x4+ x2) (x +x3+ x5 +x7).
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Find the coefficient a, (i.e. the coefficient of x") in generating function ﬁ J
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

: =14+x+x2+x3+x*+x5+ ...
— X
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

1—x

=14+x+x2+x3+x*+x5+ ...

thus

1

A= (A+x+X2+x3 x4+ x5+ A+ x+ 2+ 3+ x4+ x5+ ..)
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

1—x

=14+x+x2+x3+x*+x5+ ...

thus

1

A= (A+x+X2+x3 x4+ x5+ A+ x+ 2+ 3+ x4+ x5+ ..)

Now, the question what will be the coefficient of x” in this product?
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

1—x

=14+x+x2+x3+x*+x5+ ...

thus

1

A= (A+x+X2+x3 x4+ x5+ A+ x+ 2+ 3+ x4+ x5+ ..)

Now, the question what will be the coefficient of x" in this product? To get x" you
need to multiply xhxk such that h +h = n.
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

1—x

=14+x+x2+x3+x*+x5+ ...

thus

1

A= (A+x+X2+x3 x4+ x5+ A+ x+ 2+ 3+ x4+ x5+ ..)

Now, the question what will be the coefficient of x" in this product? To get x" you
need to multiply x1x%2 such that 4 +/ =n. In how many way we can select /; and
h?
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1Jx)2' J

Solution: We know that
1

1—x

=14+x+x2+x3+x*+x5+ ...

thus
1
A= (A+x+X2+x3 x4+ x5+ A+ x+ 2+ 3+ x4+ x5+ ..)

Now, the question what will be the coefficient of x" in this product? To get x" you

need to multiply x1x%2 such that 4 +/ =n. In how many way we can select /; and

h? This a problem with "divider" put n sticks and select where to put one divider -
you have ("YI) options. So

n+1
an = ( 1 )
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Find the coefficient a, (i.e. the coefficient of x") in generating function ﬁ J
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that

1
1—:1+x+x2+x3+x4+x5+...,
— X

thus
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that

1
=14 x+ x4+ x5+
1—x
thus
4
(1—x)k
=(14+x+x2+x34+ ) A4+ x+x2+x3+..0)
k times
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that

1
=14 x+ x4+ x5+
1—x
thus
4
(1—x)k
=(14+x+x2+x34+ ) A4+ x+x2+x3+..0)
k times

Now the question what will be the coefficient of x" in this product?
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that
1

=14 x+ x4+ x5+
1—x
thus
4
(1—x)k
=(14+x+x2+x34+ ) A4+ x+x2+x3+..0)
k times

Now the question what will be the coefficient of x" in this product? To get x" you
need to multiply x1x%2 ... x* such that Iy +h +---+ I = n.
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that

1
=14 x+ x4+ x5+
1—x
thus
4
(1—x)k
=(14+x+x2+x34+ ) A4+ x+x2+x3+..0)
k times

Now the question what will be the coefficient of x" in this product? To get x" you
need to multiply x"1x% ... x* such that [y +h+---+ I =n. In how many way we can
select I, b, ..., It?
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Find the coefficient a, (i.e. the coefficient of x") in generating function (1—1x)‘<' J

Solution: We know that

1
=14 x+ x4+ x5+
1—x
thus
4
(1—x)k
=(14+x+x2+x34+ ) A4+ x+x2+x3+..0)
k times

Now the question what will be the coefficient of x" in this product? To get x" you
need to multiply x"1x% ... x* such that [y +h+---+ I =n. In how many way we can

select /1, b, ..., Ik? This (again) a problem with "divider" put n sticks and select
where to put k — 1 dividers - you have ("ti{l) options.
n+k—1
to = ( k—1 )
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