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"Introduction" to graphs.
There are different definitions of Graphs and a number of different and very interesting
generalizations. We will start with the most basic and classical one, (or better to say
simple, undirected graph) we will be using it through the class.

Graph is a pair G = (V ,E), a set V is a set of vertices and a set E is a set of edges,
joining different pairs of distinct vertices.

V = {a,b,c,d ,e} and E = {(a,b),(b,c),(a,c),(e,c),(e,a),(d ,c)}.

Note when we define the edge the order of vertices does not meter i.e. (a,b) is
the same age as (b,a) (yes this comes from the fact that graph is undirected, we
do not care about directions here).
If (a,b) is an edge. We call a, b - ends of the edge (a,b). We agree that ends of
an edge must be different! (i.e. a 6= b).
We also agree that there is at most one edge between any two vertices. (yes this
comes from "simple")
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More Examples.
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Bit more of definitions

a and b are adjacent vertices if they are connected by edge (i.e. if they are the
end points of an edge, i.e. if (a,b) ∈ E). Example: 2 and 5 are adjacent (because
(2,5) ∈ E), but 4 and 1 are not, because (4,1) 6∈ E .
We say that an edge is an incident to a vertex if the vertex is an end point of this
edge. Example: (4,3) is incident to 4 and 3 but not to 2.
Path: is a sequence of distinct vertices (x1,x2, . . . ,xn) such that consecutive
vertices are adjacent. Example: (4,3,1,6) or (2,5,7). Note: (3,6,1,4) not a
path. (4,3,1,6,3) not a path. And there is no pass from 2 to 1.
Circuit: is a pass that ends where it starts (i.e. x1 = xn, yes this is a bit of mix up
because we repeated the last vertex, but this is allowed for this very special case
and for only those vertices). Example: (3,1,6,3), (2,5,7,2).
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Example: matching and bipartite

Every Spring faculty of Math. Dep. of Aurora State University submit their request for
available classes to teach over the summer, there are five people and there are five
classes. The problem is to find one-to-one matching of Professors to classes or to
show that such matching does not exist (and to ask Prof. to be more reasonable with
their requests).

We can represent this situation as a graph:

So does it exists a one-to-one matching of Professors to classes in the above graph?
Unfortunately, NO. (just Look at what Joe, Linda and Mike want). The above graph
is an example of a bipartite graph (is a graph whose vertices can be divided into two
disjoint sets and such that every edge connects a vertex from one set to another - i.e.
for each edge the end points belong to different sets). We will sure talk much more
about those guys.
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Example: Network’s vulnerability

Suppose we are given a graph representing a network of telephone lines. We are interested in
networks’ vulnerability to accidental distraction we want to identify those lines and switching
centers that must stay in service to avoid disconnecting the network.

Actually, it is clear that we can remove any edge in this graph and keep the network connected.
The same if we remove a vertex (when you remove a vertex, you must remove all edges attached
to this vertex). It is also easy to see that we can remove two edges and this will disconnect the
network (for example (c, f ) and (f ,d) will make f to be disconnected from the rest of the
vertices).
We can ask a different question: what is the minimal number of edges we need to keep so that the
network is still connected? Lets first play with some graphs:

There is no edge we can remove here! Is there something special in the "geometry" of this graph?
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Thus
a minimal connected set we are looking for should be a tree.
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
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(indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14).

So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police.

IF we can find a good
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
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position of 5 police then we are done.

Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!!

If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
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Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
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4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
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every edge exactly once.

No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?
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position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
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Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess).

Start with an edge containing a vertex of degree 2 (say (c,d)).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and k are
ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will NOT
be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus 4
police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. Lets try it!! If we put 5 police all at vertices of degree 3
then we cover 5∗3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If
4 police at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover
every edge exactly once. No other combination will do the job. Now we can start the systematic
analysis (i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are ends of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i and
k are ends of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices they will
NOT be able to do the job (indeed police can observe maximum 3 vertices from a given edge, thus
4 police can observe maximum 4∗ 3 < 14). So we need at least 5 police. IF we can find a good
position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we cover
5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police at
vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d .
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police). Thus we MUST put police to vertex g .

CONTRADICTION (we have two vertices of
degree 2 with police). Thus we MUST start all over again and there is no police at d .
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police). Thus we MUST put police to vertex g . CONTRADICTION (we have two vertices of
degree 2 with police).

Thus we MUST start all over again and there is no police at d .
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police). Thus we MUST put police to vertex g . CONTRADICTION (we have two vertices of
degree 2 with police). Thus we MUST start all over again and there is no police at d .
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police). Thus we MUST put police to vertex g . CONTRADICTION (we have two vertices of
degree 2 with police). Thus we MUST start all over again and there is no police at d . But we
MUST take care of edges (c,d) and (d,h).

Now look at k we should not put police there!
(because, if we do we have and edge with two police and a vertex of degree 2 with a police).
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Police and edge cover

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Lets first understand the minimal number of police we may need: The graph has 14 edges.
Vertices b,c,e, f ,h and h are the end of 3 edges each (i.e. each has degree 3). Vertices a,d,g, i
and k are the end of 2 edges each (i.e. each has degree 2). Thus if put police at just 4 vertices
they will NOT be able to do the job (indeed police can observe maximum 3 vertices from a given
edge, thus 4 police can observe maximum 4∗3 < 14). So we need at least 5 police. IF we can find
a good position of 5 police then we are done. If we put 5 police all at vertices of degree 3 then we
cover 5∗ 3 = 15 edges and thus one edge must be covered twice (i.e. at both vertices). If 4 police
at vertices of degree 3 and one of degree 2 then we cover at most 14 edges and must cover every
edge exactly once. No other combination will do the job. Now we can start the systematic analysis
(i.e. "very" clever guess). Start with an edge containing a vertex of degree 2 (say (c,d)). Assume
there is an officer at vertex d . Then we can not put police at c or h (no edge can have both ends
with police). Thus we MUST put police to vertex g . CONTRADICTION (we have two vertices of
degree 2 with police). Thus we MUST start all over again and there is no police at d . But we
MUST take care of edges (c,d) and (d,h). Now look at k we should not put police there!
(because, if we do we have and edge with two police and a vertex of degree 2 with a police).
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MUST take care of edges (c,d) and (d,h). Now look at k we should not put police there!
(because, if we do we have and edge with two police and a vertex of degree 2 with a police). Thus
we must put police at j.
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Police and edge cover (definition)

The graph below represents a part of a city’s map. We want to position police at corners (vertices)
so that they can keep every block (edge) under surveillance (or mathematically, every edge should
have a police at at least one of its vertices). What is the fewest number of police that can do the
job?

Edge Cover

A set C of vertices (i.e. C ⊂ V ) in graph G with property that every edge of G is incident to at
least one vertex in C is called an edge cover.

In the above graph we see the edge cover of minimal size.
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Committee meetings and independent set of vertices
Assume Math. Dep. at Aurora State University has a following schedule problem. As
any department they have a lot of committees that meet for one hour each week. One
wants to schedule of committee meeting times that minimizes the total number of
hours but such that two committees with overlapping members do not meet at the
same time.

We will model it with a graph, where each committee is represented by a
vertex and joint two vertices by an edge if they represent committees with the same
faculty:

A set of committees can all meet at the same time IF there are no edges between the
corresponding set of vertices.

Independent set
A set of vertices without an edge between any two is called an independent set of
vertices.

We want to minimize the total number of hours! So we want as many as possible
committees meet at the same time. Thus we need to find largest possible independent
set(s). This is far from trivial. If we play a bit with the above example we will see
that that there are two independent sets of size 4: a,e, f ,h and b,c,g ,h and every
other independent set will have at most 3 vertices.
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Edge Cover and Independent set

Theorem

Consider a graph G = (V ,E) then I ⊂ V is an independent set if and only if V \ I is an
edge cover.

Proof: Note that if there is no edges between the vertices in I, then every edge in E
must involve at least one vertex which is not in I (i.e. in V \ I). Thus V \ I is an edge
cover.
Now assume V \ I is an edge cover. Then every edge must have a vertex from V \ I
and so we can not have an edge with both ends from I, thus no two vertices from I
are connected by an edge.

�

A very interesting outcome of this theorem is that if I is an independent set of largest
size in G then V \ I is an edge cover of smallest possible size. SO finding maximal
independent set is equivalent to finding a minimal edge cover.
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