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Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.

We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same".

What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices.

What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same,

but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different.

Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism

The word isomorphism comes from Ancient Greek: isos – "equal", and morphe —
"form" or "shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What
do you think about those graphs:

They are different -> different number of vertices. What do you think about those
graphs:

The number of vertices is the same, but still, they are very different. Number of
edges is not the same. One is connected another not!

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Isomorphism
The word isomorphism comes from Ancient Greek: isos – "equal", and morphe — "form" or
"shape"). So it is used to describe similarity of different objects.
We would like to understand and define what is it for graphs to be "the same". What do you think
about those graphs:

Number of vertices the same, number of edges the same (NOTE THIS IS NOT ENOGH TO BE
THE SAME). Probably, there is a hope and indeed we can pull vertex 5 "down" in graph G2
(together with vertex 4) so that 4 and 5 goes out of the triangle 1,2,3, and the graph looks the
same. Now we must give a precise definition

Two graphs G1 and G2 are called isomorphic if there exists a one-to-one correspondence between
the vertices in G1 and the vertices in G2 such that a pair of vertices are adjacent in G1 if and only
if the corresponding pair of vertices are adjacent in G2

Now we can make "pull vertex 5" story more mathematical: let f be the map between vertices of
G1 and G2 defined in the following way:

f (e) = 5; f (d) = 4, f (b) = 1, f (c) = 2, f (a) = 3.

Next it is not hard to check that f is isomorphism, indeed this is one to one map and we can
check the property of preserving the adjacency (for example f maps (e,d) to (5,4)).
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Isomorphism

Two graphs G1 and G2 are called isomorphic if there exists a one-to-one
correspondence between the vertices in G1 and the vertices in G2 such that a pair of
vertices are adjacent in G1 if and only if the corresponding pair of vertices are adjacent
in G2

Some almost trivial but useful properties of isomorphic graphs:

Number of vertices must be the same.
Number of edges must be the same.
Let v ∈ V be a vertex. We define deg(v) to be the degree of v (the number of
edges incident to the vertex). Clearly, the degree should be also preserved under
isomorphism (i.e. deg(v) = deg(f (v))).

The degree story helps us to guess the logic of the previous example:

Indeed, deg(e) = 1 and deg(5) = 1 and there are NO other vertices of degree one in
those graphs, so the only chance to create isomorphism is to "send" e to 5, i.e.
f (e) = 5. The same logic applies to f (d) = 4 (deg(d) = deg(4) = 4 and there are no
other vertices of degree 4).
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Two graphs G1 and G2 are called isomorphic if there exists a one-to-one
correspondence between the vertices in G1 and the vertices in G2 such that a pair of
vertices are adjacent in G1 if and only if the corresponding pair of vertices are adjacent
in G2

We can have a lot of fun with isomorphisms, for example we can list "all graphs" of 3
vertices,

more precisely here all of non isomorphic graphs of 3 vertices:
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Subgraphs

A subgraph is a graph formed by a subset of vertices and edges of a larger graph.

Subgraphs are super useful when we study isomorphisms. Remember, the isomorphisms must
preserve "structure" thus must preserve subgraphs. So do you think those two graphs are
isomorphic:

Vertex count - the same.
Edge count -the same.
Degree count is the same. Both graphs 3 vertices of degree 2 and 2 vertices of degree 3.
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Subgraphs

A subgraph is a graph formed by a subset of vertices and edges of a larger graph.

Subgraphs are super useful when we study isomorphisms. Remember, the isomorphisms must
preserve "structure" thus must preserve subgraphs. So do you think those two graphs are
isomorphic:

Vertex count - the same.
Edge count -the same.
Degree count is the same. Both graphs 3 vertices of degree 2 and 2 vertices of degree 3.

What about now?

You may see that G has a subgraph of 3 vertices {a,b,c} which is a circuit,
there is no circuit of length 3 in G′. So the answer is NO those graphs are not isomorphic.
NOTICE: this is an example of two graphs, with the same, vertex, edge and degree count
which are NOT isomorphic.

Artem Zvavitch Lecture 1.2, MATH-42021/52021 Graph Theory and Combinatorics.



Subgraphs

A subgraph is a graph formed by a subset of vertices and edges of a larger graph.

Subgraphs are super useful when we study isomorphisms. Remember, the isomorphisms must
preserve "structure" thus must preserve subgraphs. So do you think those two graphs are
isomorphic:

Vertex count - the same.
Edge count -the same.
Degree count is the same. Both graphs 3 vertices of degree 2 and 2 vertices of degree 3.

What about now? You may see that G has a subgraph of 3 vertices {a,b,c} which is a circuit,
there is no circuit of length 3 in G′.
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Another example

Are those two graphs isomorphic?

Vertex count - the same.
Edge count -the same.
More over, degree count is the same.
Trying to look for some contradiction in subgraphs .... no luck.

So we need just to start working out isomorphism and see how it goes..........
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Another example

Are those two graphs isomorphic?

So we need just to start working out isomorphism and see how it goes, let’s call this isomorphism
α:

We notice that in both graphs all vertices are symmetric to each other (they have symmetries
of the regular 7-gon). Thus we can send vertex a to any vertex in G′, why not to 1: α(a) = 1.
Now neighbors of a must go to neighbors of 1, but how. Let’s see what kind of subgraphs (of
neighbors of 1) we get there.
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Another example

Are those two graphs isomorphic?

So we need just to start working out isomorphism and see how it goes, let’s call this isomorphism
α: We notice that in both graphs all vertices are symmetric to each other (they show symmetries
of the regular 7-gon). Thus we can send vertex a to any vertex in G′ why not to 1: α(a) = 1.
Now neighbors (adjacent vertices) of a must go to neighbors of 1, but how. Let’s see what kind of
subgraphs (of neighbors of 1) we get there.

Our isomorphism MUST be also an isomorphism on
those subgraphs. But when we look at them we see that there is no much choice: f which is of
degree 1 must go to 7 or to 2 and (again by symmetry) there is no much difference to which of
them. Set α(f ) = 7, then automatically: α(g) = 4,α(b) = 4,α(c) = 2. We left to decide about
vertices e and d and 3,6. Notice that g is adjacent to e, and α(g) = 4, thus α(e) 6= 6 because 6
is not adjacent to 4 and the only choice α(e) = 3 and α(d) = 6. The final steps is to check that
all adjacency relations are preserved.
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Yet, another example + a cool idea

Consider a graph G = (V ,E), its complement is a graph Ḡ = (V ,E ′) with the same set of vertices
but now with edges between exactly those pairs of vertices that were not adjacent in G.

Notice that, if G1 and G2 are isomorphic if and only if Ḡ1 and Ḡ2 are isomorphic (you actually may
use the same isomorphism). Consider previous example

Now lets draw a compliment graphs

Both of them are circuits of length 7, thus isomorphic, and solution became almost trivial with this
cool trick!!!
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