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Planar Graph - continuation of the story.

There may be a lot of ways to draw a planar graph:

Is there any pattern? connection? It turns out that the answer is yes. To stay the
next theorem we need a couple of new definitions:

Connected graph - for any pair of vertices there is path with end points at those
vertices.
v - number of vertices in the graph.
e - number of edges in the graph.
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Planar Graph - continuation of the story.
There may be a lot of ways to draw a planar graph:

Is there any pattern? connection? It turns out that the answer is yes. To stay the next
theorem we need a couple of new definitions:

Connected graph - for any pair of vertices there is path with end points at those
vertices.
v - number of vertices in the graph.
e - number of edges in the graph.
r - number of regions the planar graph defines on the plane (do not forget outside
of the graph!).

Amazing observation: r - does not change! Moreover,......
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Theorem: Euler’s Formula

If G is a connected planar graph, then any plane graph depiction of G has r = e− v +2 regions.

Proof : We will use the method of mathematical induction to prove the theorem. The idea is that
we will first prove the theorem for connected, planar graphs with just one edge (a starting point for
induction, case "n = 1"). Next we will assume that the theorem is true for a connected, planar
graph with n edges, where n is some fixed natural number – and our goal will be to show that
from this assumption we can always make the next step, i.e. to show that the theorem is true for a
connected planar graph with n +1 edges.
Let G1 will be a planar, connected graph with just one edge, but then it must have exactly two
vertices and defines just one region:

Denote by v1,e1 and r1 number of vertices, edges and regions of G1. Then

v1 = 2,e1 = 1 and r1 = 1

So r1 = e1− v1 +2, and the statement is true for n = 1!
Now, we assume that the theorem is true for any planar, connected graph of n-edges. i.e. if Gn is
a planar, connected graph and vn,en and rn number of vertices, edges and regions of Gn. Then

rn = en− vn +2.

Our goal now to show that we can make next step of induction and the theorem is true for any
planar connected graph Gn+1 of n +1 edges, i.e. rn+1 = en+1− vn+1 +2.
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Theorem: Euler’s Formula

If G is a connected planar graph, then any plane graph depiction of G has r = e− v +2 regions.

Now, we assume that the theorem is true for any planar, connected graph of n-edges. i.e. if Gn is
a planar, connected graph and vn,en and rn number of vertices, edges and regions of Gn. Then

rn = en− vn +2.

Our goal now to show that we can make next step of induction and the theorem is true for any
planar connected graph Gn+1 of n +1 edges, i.e. rn+1 = en+1− vn+1 +2.

So let Gn+1, be planar connected graph of n +1 edges. Assume that we are drawing Gn+1 edge by
edge on the plane in such a way that on each step we have a connected graph. Let (x ,y) be the
last edge of Gn+1 we draw (i.e. edge "number" n +1), the idea is to "remove" (x ,y) and thus
create a graph of just n edges and to use the assumption. Note that when we remove (x ,y) we
will have planar graph (subgraph of planar is planar) and connected (this is how we were drawing
Gn+1). Still we will need to consider two cases (do we change regions or not):
In the first case x and y are were in Gn (the graph we draw before adding edge (x ,y)):

Then x and y are on the boundary of a common region in Gn and edge (x ,y) splits K into two
regions in Gn+1. Then vn+1 = vn, en+1 = en +1 and rn+1 = rn +1 now plug it into Euler’s
formula for Gn:

(rn+1− 1) = (en+1− 1)− vn+1 +2.

Cancelling −1 from both sides we get the formula we need for Gn+1. YES!!!
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will have planar graph (subgraph of planar is planar) and connected (this is how we were drawing
Gn+1). Still we will need to consider two cases (do we change regions or not):
In the second case one of x , y is not from Gn ( it can be only one, the graphs are connected!):

Then when we added (x ,y) and created Gn+1 we have NOT created new regions! Thus
vn+1 = vn +1, en+1 = en +1 and rn+1 = rn now again plug it into Euler ’sformula for Gn:

rn+1 = (en+1 +1)− (vn+1 +1) +2.

Cancelling +1 on the right we get the formula we need for Gn+1.
�
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Euler’s Formula – Example

How many regions would there be in a plane graph with 10 vertices each of degree 3?

To use the Euler’ formula we observe that v = 10 and e = 3∗10/2 = 15 thus

r = e − v +2 = 15−10+2 = 7.
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Euler’s Formula – Corollary

It would be great to use Euler’s formula to check if a given graph is planar, indeed, IF the graph
does not satisfy the formula it is not planar.

The problem is "number of regions" –when we are
given the graph and before we drawn it on the plane it may be impossible to find r , especially if it
does not exists! But here a super useful trick:

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Proof : Define the degree of a region to be the number of edges on its boundary (id edge occurs
twice we count it twice).
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Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

So lets apply it to our old friend K5:

Here v = 5 and e = 5∗ 4/2 = 10 and 3v− 6 = 9 which is less then 10 so K5 CAN NOT BE
PLANAR!
Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 12 > 9. SO DOES IT TELL
US THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify
planar graphs!! it only helps to catch non-planar!)
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Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)

Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem.

Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph.

We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only!

Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!).

In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r),

now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r

and get in this special case inequality 2e ≥ 4r or 1
2 e ≥ r . Plug it in Euler formula

1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r .

Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2

and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.

Artem Zvavitch Lecture 5, MATH-42021/52021 Graph Theory and Combinatorics.



Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.
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Euler’s Formula – Corollary – Example

Corollary to Euler’s formula:

If G is a connected planar graph with e > 1, then e ≤ 3v− 6.

Lets apply it to our other old friend K3,3:

Here v = 6 and e = 6∗ 3/2 = 9 and 3v− 6 = 12 and .... it works 10 > 9. SO DOES IT TELL US
THAT K3,3 is PLANAR??? NO NO and NO (the corollary does NOT let us unidentify planar
graphs!! it only helps to catch non-planar!)
Just to show that Euler’s formula is very strong let us see how we can still use it to solve K3,3
problem. Notice that K3,3 is a bipartite graph. We proved that those guys may have circuits of
even length only! Thus a shortest circuit we may have is of length 4 (and NOT 3 as for a general
graph!). In the proof of the corollary we computed the sum of all degrees of regions (and the
estimate we got was greater then 3r), now we can improve this estimate for a bipartite graph – 4r
and get in this special case inequality 2e ≥ 4r or 1

2 e ≥ r . Plug it in Euler formula
1
2 e ≥ r = e− v +2 and get a special case of the corollary for bipartite connected planar graphs:

e ≤ 2v− 4

Now it is easy to check that K3,3 does not satisfy it (indeed 9 6≤ 2∗ 6− 4) and thus it is not
planar.
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