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Salesman Problem

Suppose a salesman territory includes several cites with highway connecting certain
pairs of these cities.

His job requires him to visit each place personally. He would
like to save his time and visit each place exactly once and come back to the place
where he have started. Is it in general possible?

How to determine if it is possible or not? Is it possible to create an algorithm? How
fast such an algorithm could be?
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Hamilton Circuits and Path.

Hamilton Circuit is a circuit that visit each vertex of the given graph exactly once.

Hamilton Path is a path that visit each vertex of the given graph exactly once.

We had quite pleasant experience with Euler cycle and trail: very nice theorem which
gives complete characterization (i.e. if and only if) and a very reasonable algorithm.
Unfortunately, the story is not so straight forward at all for Hamilton circuits and
paths. We will provide some methods which would help us to show that Hamilton
circuits do not exist for some graph and prove a nice theorem which tell us that degree
of vertices of a graph with Hamilton circuit must be large enough, but this is about it
(for this class) and many questions are still open about Hamilton circuit .
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Hamilton Circuits – some rules for possible existence

Hamilton Circuit is a circuit that visit each vertex of the given graph exactly once.

It is clear that if graph G contains a Hamilton circuit it must be connected. More?

Rules

1 If a vertex x has degree 2 both, of the edges incident to x must be part of any Hamilton
circuit.

2 No proper subcircuit (i.e. a subcircuit of original one which does not coincide with it, in this
case just any subcircuit which does not contain all vertices of the graph), can be formed
when building a Hamilton circuit.

3 Once the Hamilton circuit is required to use two edge at vertex x , all other (unused) edges
incident at x can be deleted.

Let us show that the graph

has no Hamilton circuit. We start by applying Rule 1. We see that the vertices A,B,F ,G,E ,D
are all of degree two. Thus is Hamilton circuit exist it must use all edges adjacent to them. We
mark those edges (better to say "vertices/corners") with additional lines/turns.
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Moreover, it contradicts Rule 2 - our circuit has a subcircuit CFG.
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Hamilton Circuits – some rules for possible existence / one more example

1 x has degree 2 -> both of the edges incident to x must be part of any Hamilton circuit.
2 No proper subcircuit, can be formed when building a Hamilton circuit.
3 Once the Hamilton circuit is required to use two edge at vertex x , all other (unused) edges

incident at x can be deleted.

We start by applying Rule 1. We see that the vertices a,g are all of degree two. Thus is Hamilton
circuit exist it must use all edges adjacent to them.
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We notice that the graph is symmetric with respect to
line d − e − g − i , thus we can pick any of edges (and "remove" other).
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to i is used so we must select another one. We notice that the graph is symmetric with respect to
line d − e − g − i , thus we can pick any of edges (and "remove" another). But now look at vertex
k, we see that only two edges is left adjacent to k and we must select them. Now we may look at
vertex j. We have already selected two edges adjacent to j thus we should remove all other unused
edges adjacent to j. Now we look at f (because after each step we check if we created any vertices
of degree 2) it has only 2 edges adjacent to it we must select them. Now look at vertices b and e -
both of them already have two adjacent edges used (each), thus we must remove all other edges
incident to b or e.
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incident to b or e. And now look ad vertex d ...

ups... it has only one adjacent vertex that we can
use to draw a circuit, this contradict Rule 1. Graph has no circuit.
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Hamilton Circuits – Theorem

Theorem

A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each vertex is at
least n/2.

Proof : The theorem is easy to check for n = 3, indeed then graph G must have a degree of each
vertex at least 1.5 (i.e. at least 2) and thus the only possibility is K3:

Artem Zvavitch Lecture 7, MATH-42021/52021 Graph Theory and Combinatorics.



Hamilton Circuits – Theorem

Theorem

A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each vertex is at
least n/2.

Proof : The theorem is easy to check for n = 3,

indeed then graph G must have a degree of each
vertex at least 1.5 (i.e. at least 2) and thus the only possibility is K3:

Artem Zvavitch Lecture 7, MATH-42021/52021 Graph Theory and Combinatorics.



Hamilton Circuits – Theorem

Theorem

A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each vertex is at
least n/2.

Proof : The theorem is easy to check for n = 3, indeed then graph G must have a degree of each
vertex at least 1.5 (i.e. at least 2)

and thus the only possibility is K3:

Artem Zvavitch Lecture 7, MATH-42021/52021 Graph Theory and Combinatorics.



Hamilton Circuits – Theorem

Theorem

A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each vertex is at
least n/2.

Proof : The theorem is easy to check for n = 3, indeed then graph G must have a degree of each
vertex at least 1.5 (i.e. at least 2) and thus the only possibility is K3:

Artem Zvavitch Lecture 7, MATH-42021/52021 Graph Theory and Combinatorics.



Hamilton Circuits – Theorem

Theorem

A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each vertex is at
least n/2.

Proof : Thus we may assume n ≥ 4.

Among all paths in G select one with has the greatest
number of vertices, denote it P = (x1,x2, . . . ,xk )

Remember that each vertex at our graph has degree at least n/2 ≥ 2. Thus vertices x1 and xk
must be connected to at least n/2 vertices each. Also note that x1 and xk can be adjacent only
to vertices from P (if not we would be able to make our pass P longer). The next observation is
even more tricky.
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least n/2.

Proof : Thus we may assume n ≥ 4. Among all paths in G select one with has the greatest
number of vertices, denote it P = (x1,x2, . . . ,xk )

Remember that each vertex at our graph has degree at least n/2 ≥ 2. Thus vertices x1 and xk
must be connected to at least n/2 vertices each. Also note that x1 and xk can be adjacent only to
vertices from P (if not we would be able to make our pass P longer). The next observation is even
more tricky. We claim that there are two adjacent xi and xi+1 such that xi is adjacent to xk and
xi+1 is adjacent to x1.

This can be proved by contradiction.
Assume this is not true, then for each vertex xi+1 adjacent to x1 we have the vertex xi is NOT
adjacent to xk (note that non of xi is xk , because it does not have xk+1), thus we just found at
least n/2 vertices NOT adjacent to xk in P, but, as we found before, there are also n/2 vertices
adjacent to xk ! Thus in P we have all together at least n/2 not adjacent to xk ; n/2 adjacent to
xk AND xk — all of those guys make together at least n/2+ n/2+ 1 = n + 1 vertices in P, which
is greater then number of vertices in G – IMPOSSIBLE!
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must be connected to at least n/2 vertices each. Also note that x1 and xk can be adjacent only to
vertices from P (if not we would be able to make our pass P longer). The next observation is even
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Next using the claim we just proved, we can create a circuit out of P and additional two edges we
just found!
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number of vertices, denote it P = (x1,x2, . . . ,xk )

Remember that each vertex at our graph has degree at least n/2 ≥ 2. Thus vertices x1 and xk
must be connected to at least n/2 vertices each. Also note that x1 and xk can be adjacent only to
vertices from P (if not we would be able to make our pass P longer). The next observation is even
more tricky. We claim that there are two adjacent xi and xi+1 such that xi is adjacent to xk and
xi+1 is adjacent to x1.
Next using the claim we just proved, we can create a circuit out of P and additional two edges we
just found! Indeed consider C = (x1,xi+1,xi+1, . . . ,xk ,xi ,xi−1, . . . ,x1).

Note, we did NOT used
edge (xi ,xi+1). Now comes second "cool" step. We claim that our circuit (and thus our path
before) is of length n i.e. k = n, i.e. WE COVERED ALL VERTICES (and thus found our
Hamilton circuit!). Indeed, assume this is not true, then there is a vertex in G which does not
belong to P. Our graph G is connected. Thus there also must be a vertex connected to our
circuit C . Say v . BUT THEN WE CAN CREATE A PATH LONGER THEN P!!! Just start from
v and go around C - we got a pass of length (k + 1) which contradicts with maximality of P and
the theorem is proved.
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Hamilton Circuits – Theorem

Theorem
A connected graph of n vertices, n > 2, has a Hamilton circuit if the degree of each
vertex is at least n/2.

Theorem is quite useful, for example our old friend K3,3

There are 6 vertices each has degree 3 and 6/2 = 3. So YES there is a Hamilton
circuit.
BE CAREFUL: The theorem tell us if the Hamilton circle exists. It does NOT tell us
when the Hamilton circle is not available. Just check this graph it has a lot of vertices
all of "small" degree – 2.
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