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Graph Coloring - Theorems.
We need to start with a couple of definitions:

A polygon is a plane graph which consist of single circuit with edges drawn as straight
segments.

Note that a polygon need not to be convex.

Triangulation of a polygon - is a process of adding a set of straight-line chords
between pairs of vertices of a polygon so that all interior regions of the graph are
bounded by triangle (note that: chords can not cross each other and they can not
cross the sides of polygon).

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorems.
We need to start with a couple of definitions:

A polygon is a plane graph which consist of single circuit with edges drawn as straight
segments.

Note that a polygon need not to be convex.

Triangulation of a polygon - is a process of adding a set of straight-line chords
between pairs of vertices of a polygon so that all interior regions of the graph are
bounded by triangle (note that: chords can not cross each other and they can not
cross the sides of polygon).

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorems.
We need to start with a couple of definitions:

A polygon is a plane graph which consist of single circuit with edges drawn as straight
segments.

Note that a polygon need not to be convex.

Triangulation of a polygon - is a process of adding a set of straight-line chords
between pairs of vertices of a polygon so that all interior regions of the graph are
bounded by triangle (note that: chords can not cross each other and they can not
cross the sides of polygon).

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorems.
We need to start with a couple of definitions:

A polygon is a plane graph which consist of single circuit with edges drawn as straight
segments.

Note that a polygon need not to be convex.

Triangulation of a polygon - is a process of adding a set of straight-line chords
between pairs of vertices of a polygon so that all interior regions of the graph are
bounded by triangle (note that: chords can not cross each other and they can not
cross the sides of polygon).

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorems.
We need to start with a couple of definitions:

A polygon is a plane graph which consist of single circuit with edges drawn as straight
segments.

Note that a polygon need not to be convex.

Triangulation of a polygon - is a process of adding a set of straight-line chords
between pairs of vertices of a polygon so that all interior regions of the graph are
bounded by triangle (note that: chords can not cross each other and they can not
cross the sides of polygon).

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1.

Theorem:

The vertices in a triangulation of a polygon can be 3-colored.

Proof : We will use the method of mathematical induction. We will do induction on n - the
number of (boundary) edges of the polygon (which is equal to the number of vertices). When
n = 3 the statement is trivially true. Assume that the theorem is true for any polygon with n or
less boundary edges. Our goal to use this assumption to prove it for polygon P with n +1 edge.
Let T be a triangulation of P

Note that since number of edges in P is larger then 3, T must have some chord edges. Pick any
chord edge ( for example (b,e) on the above figure). Then this chord splits T in to two smaller
triangulated polygons (on the example above we get polygons {a,b,e, f } and {b,c,d,e}), each
of those triangulated polygons must have less then n +1 vertices (indeed chord cuts at least one
vertex from polygon) and thus can be 3-colored, by the induction assumption. Next, we notice
that we can combine the coloring of those two subgraphs and to get a 3-coloring of T . Indeed,
the only common edge of those two guys is the chord we selected (yes! here we use that chords
can not cross). Thus we give a names for two colors for two vertices of the edge (say b is 1 and e
is 2 in our example) and starting from them color each subgraph independently by induction.

�
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Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner.

In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon.

We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery.

Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance.

Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green").

Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue.

Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched!

Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n.

We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c

(if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n),

select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.

Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Theorem 1 - cool application
The Art Gallery problem asks what is the least number of guards needed to watch painting along
the n walls of art gallery. The walls are assumed to be a polygon (not necessary convex! there may
be more then one room). The guards need to have a direct line of sight to every point of the walls.
A guard at a corner is assumed to be able to see the two walls that end at that corner. In 1978
Fisk presented a simple solution of this problem using coloring of triangulation of a polygon. We
denote by brc the largest integer which is smaller or equal to r , for example b3.97c = 3,
b15c = 15, b

√
5c = 2.

The Art Gallery Problem with n walls requires at most bn/3c guards.

Make a triangulation of the polygon formed by the walls of the gallery. Note that a guard at any
corner of a triangle has all sides of the triangle under surveillance. Now obtain 3-coloring of
triangulation (say "red, blue, green"). Each triangle will have exactly one corner which is red, one
conner which is green and one conner which is blue. Now if we place a guard in each corner
(vertex!) which is (for example) red we get that all wall of the gallery are watched! Now our
polygon has n walls = edges, thus the number of vertices is also n. We used 3 colors at least one
color was used at most bn/3c (if not then each color was used at least bn/3c+1 times and we
get the number of vertices is at least 3bn/3c+3, which is greater then n), select the color that
was used a least amount of times, put the guards on vertices of selected color.
Note (using the example below) that the bound is the best possible

Artem Zvavitch Lecture 9, MATH-42021/52021 Graph Theory and Combinatorics.



Graph Coloring - Planar case.

Reminder: We are looking for the minimal number of colors required to color a given
graph. This minimal number of colors is called the chromatic number of a graph. For
a graph G we denote the chromatic number of G as χ(G).

Theorem

G is a planar graph, then χ(G) ≤ 4.

"used to be" very, very long standing open problem.
in "70" was proved, using computers!
Still a good question to find a good proof.

We will prove a bit weaker, but still very cool theorem

Theorem

G is a planar graph, then χ(G) ≤ 5.
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Second best theorem - G planar, then χ(G) ≤ 5

We start with some trivial observations.

First it is enough to consider a connected graphs (if the
graph not connected then we can color its connected components independently). The theorem is
trivial if the number of vertices is 1,2,3,4,5 so we need to work with graphs having 6 or more
vertices.
We also need the following nice observation:

If G is a planar graph then there exists a vertex of degree less or equal to 5.

Proof : Assume it is not true. Then each vertex has degree at least 6, thus the number of edges
e ≥ 6v/2 = 3v , where v is the number of vertices of G. G is planar so (Lecture 5, corollary of
Euler formula): e ≤ 3v− 6. Putting those two facts together we get

3v ≤ 3v− 6,

contradiction!!

�

Remark: show that the above estimate is the best possible, i.e. create a planar graph such that all
vertices have degree at least 5.
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e ≥ 6v/2 = 3v , where v is the number of vertices of G. G is planar so (Lecture 5, corollary of
Euler formula): e ≤ 3v− 6.

Putting those two facts together we get

3v ≤ 3v− 6,

contradiction!!

�

Remark: show that the above estimate is the best possible, i.e. create a planar graph such that all
vertices have degree at least 5.
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Second best theorem - G planar, then χ(G) ≤ 5
So our graph is connected, there is a vertex of degree 5 or less and the statement is true if number
of vertices in v is less or equal to 5.
Proof : The theorem is true for v = n = 5 or less, assume it is true for some n ≥ 5 our goal is to
prove it for n +1.

There exists a vertex v in G such that deg(v)≤ 5. Note that if deg(v) < 5,
then we can finish the proof, indeed, consider subgraph of all vertices of G but vertex the v . It
has n vertices, thus (by inductive assumption) can be colored in 5 colors. Now, v is adjacent to
less then 5 vertices, we can always choose a color for v among 5 colors we are allowed to use.
Next we assume that deg(v) = 5. Again color the subgraph of all vertices of G but vertex v in 5
colors. Note that we may assume that all 5 vertices adjacent to v are colored in different colors
(otherwise we can again choose a "free" color for v). We name the adjacent vertices (by the
name of the colors): v1,v2,v3,v4,v5 and in clockwise order.

Next, consider all possible paths from v1 to v3 such that all vertices in the path are colored in color
1 or 3 only. We have two cases:
Case 1 - such path does not exists: Then we can "cheat". We can change color of v1 to 3 with
a following trick. We take all paths starting from v1 and having colors 1 and 3 only (NOTE NON
OF THEM WILL END AT v3). For each such path switch colors 1 and 3. NOTE THAT WE
WILL NOT CHANGE v3!!! Then we are done, the number of different colors adjacent to v is 4
and we have our "free" color to use.
Case 5 - such path exists: Ready for a cool trick? If such path exists there is NO way to create
a path of colors 2 and 4 only, from vertex v2 to vertex v4 and we can change the color of 2 to 4
exactly as we done in the Case 1.

�
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Graph Coloring -More theorems (without proofs, sorry)

Brook’s Theorem

If the graph G is not an odd circuit or complete graph, then χ(G) ≤ d , where d is the
maximum degree of a vertex in G.

Theorem

For any natural number k, there exists a triangle-free graph G with χ(G) = k.

Instead of coloring vertices we may also color edges and ask for two edges sharing the
same vertex to have different colors:

Vizing’s Theorem
If the maximum degree of a vertex in a graph G is d , then the edge chromatic number
of G is either d or d +1.
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