The search for linearity in linear dynamics

Karl Grosse-Erdmann

Département de Mathématique
Université de Mons, Belgium

Infinite Dimensional Analysis
Celebrating Richard Aron’s Work and Impact
29 octobre 2016
Linear dynamics

It is the purpose of the talk to discuss some old and some more recent results in Linear Dynamics that are due to, or have been influenced by the work of Richard Aron.
Linear dynamics

It is the purpose of the talk to discuss some old and some more recent results in Linear Dynamics that are due to, or have been influenced by the work of Richard Aron.

Linear dynamics studies the behaviour of orbits of (continuous, linear) operators.
Linear dynamics

It is the purpose of the talk to discuss some old and some more recent results in Linear Dynamics that are due to, or have been influenced by the work of Richard Aron.

Linear dynamics studies the behaviour of orbits of (continuous, linear) operators.

Throughout the talk, let

\[T : X \rightarrow X \]

be an operator on a separable Banach space (or Fréchet space) \(X \).
The operator T is **hypercyclic** if there is a vector $x \in X$ such that

$$\text{orb}(x, T) = \{x, Tx, T^2x, \ldots\}$$

is dense in X.

Karl Grosse-Erdmann (UMons)

The search for linearity

Celebrating Richard Aron
The operator T is hypercyclic if there is a vector $x \in X$ such that

$$\text{orb}(x, T) = \{x, Tx, T^2x, \ldots\}$$

is dense in X.

Each such vector x is then called a hypercyclic vector for T. We denote by

$$HC(T)$$

the set of all hypercyclic vectors.
Three classical examples of hypercyclic operators:

- Birkhoff (1929)
 \(X = H(C) \): space of entire functions, compact-open topology
 \(T_a : f \rightarrow f(\cdot + a) \), \(a \neq 0 \): the translation operators

- MacLane (1952)
 \(X = H(C) \)
 \(D : f \rightarrow f' \): the differentiation operator

- Rolewicz (1969)
 \(X = \ell^p, 1 \leq p < \infty \), or \(c_0 \)
 \(\lambda B : (x_n) \rightarrow \lambda (x_n + 1) \), \(|\lambda| > 1 \): multiples of the backward shift
Three classical examples of hypercyclic operators:

Birkhoff (1929)
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\[X = H(\mathbb{C}) \]: space of entire functions, compact-open topology
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\[X = H(\mathbb{C}) : \text{space of entire functions, compact-open topology} \]

\[T_a : f \rightarrow f(\cdot + a), \ a \neq 0 : \text{the translation operators} \]
Three classical examples of hypercyclic operators:

Birkhoff (1929)
\[X = H(C): \text{space of entire functions, compact-open topology} \]
\[T_a : f \rightarrow f(\cdot + a), \ a \neq 0: \text{the translation operators} \]

MacLane (1952)
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\(X = H(\mathbb{C})\): space of entire functions, compact-open topology

\(T_a : f \rightarrow f(\cdot + a), \ a \neq 0\): the translation operators

MacLane (1952)

\(X = H(\mathbb{C})\)
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\[X = H(\mathbb{C}) : \text{space of entire functions, compact-open topology} \]

\[T_a : f \to f(\cdot + a), \ a \neq 0: \text{the translation operators} \]

MacLane (1952)

\[X = H(\mathbb{C}) \]

\[D : f \to f' : \text{the differentiation operator} \]
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\[X = H(\mathbb{C}) : \text{space of entire functions, compact-open topology} \]

\[T_a : f \rightarrow f(\cdot + a), \ a \neq 0: \text{the translation operators} \]

MacLane (1952)

\[X = H(\mathbb{C}) \]

\[D : f \rightarrow f': \text{the differentiation operator} \]

Rolewicz (1969)
Three classical examples of hypercyclic operators:

Birkhoff (1929)

\[X = H(\mathbb{C}) : \text{space of entire functions, compact-open topology} \]

\[T_a : f \rightarrow f(\cdot + a), \ a \neq 0 : \text{the translation operators} \]

MacLane (1952)

\[X = H(\mathbb{C}) \]

\[D : f \rightarrow f' : \text{the differentiation operator} \]

Rolewicz (1969)

\[X = \ell^p, 1 \leq p < \infty, \text{ or } c_0 \]
Three classical examples of hypercyclic operators:

Birkhoff (1929)
\[X = H(\mathbb{C}) \text{: space of entire functions, compact-open topology} \]
\[T_a : f \to f(\cdot + a), \ a \neq 0 : \text{the translation operators} \]

MacLane (1952)
\[X = H(\mathbb{C}) \]
\[D : f \to f' : \text{the differentiation operator} \]

Rolewicz (1969)
\[X = \ell^p, 1 \leq p < \infty, \text{ or } c_0 \]
\[\lambda B : (x_n) \to \lambda(x_{n+1}), |\lambda| > 1 : \text{multiples of the backward shift} \]
So, why would one search for linearity in linear dynamics?
Lineability

So, why would one search for linearity in linear dynamics?

Isn’t it bizarre that linear dynamics takes up 20% of the book

Lineability

So, why would one search for linearity in linear dynamics?

Isn’t it bizarre that linear dynamics takes up 20% of the book

The answer is simple:
The set $HC(T)$ of hypercyclic vectors is fundamentally non-linear.
Lineability

So, why would one search for linearity in linear dynamics?

Isn’t it bizarre that linear dynamics takes up 20% of the book

The answer is simple:
The set $HC(T)$ of hypercyclic vectors is fundamentally non-linear.

It is a well-known consequence of the Baire category theorem that the set $HC(T)$ is always residual if T is hypercyclic, which then implies that

$$X = HC(T) + HC(T).$$

And, of course, for most operators many non-zero vectors are not hypercyclic.
Put in a different way, there is no good reason why the sum of two hypercyclic vectors should be hypercyclic.
Put in a different way, there is no good reason why the sum of two hypercyclic vectors should be hypercyclic.

But does $HC(T)$ contain a dense linear subspace (except for 0)?
Put in a different way, there is no good reason why the sum of two hypercyclic vectors should be hypercyclic.

But does $HC(T)$ contain a dense linear subspace (except for 0)?

Beauzamy (Studia Math. 1987, 8 pp.): There is a hypercyclic operator T on Hilbert space X and a hypercyclic vector $x \in X$ such that

$$\mathbb{Q} - \text{span}\{x, Tx, T^2x, \ldots\} \setminus \{0\} \subset HC(T).$$
Put in a different way, there is no good reason why the sum of two hypercyclic vectors should be hypercyclic.

But does $HC(T)$ contain a dense linear subspace (except for 0)?

Beauzamy (Studia Math. 1987, 8 pp.): There is a hypercyclic operator T on Hilbert space X and a hypercyclic vector $x \in X$ such that

$$\mathbb{Q} - \text{span}\{x, Tx, T^2x, \ldots\} \setminus \{0\} \subset HC(T).$$

Beauzamy (Studia Math. 1990, 9 pp.): Can even do it for the full span.

So, for some T, the set of hypercyclic vectors is densely lineable.
But we have:

Theorem (Herrero-Bourdon-Bès 1991-1999)

For any hypercyclic operator T, $HC(T)$ is densely lineable.
But we have:

Theorem (Herrero-Bourdon-Bès 1991-1999)

For any hypercyclic operator T, $HC(T)$ is densely lineable.

In fact, for any hypercyclic vector $x \in X$ for any operator T, we have that

$$\text{span}\{x, Tx, T^2x, \ldots\} \setminus \{0\} \subset HC(T)$$

(essentially by a Hahn-Banach argument).
Common lineability

Since the set $HC(T)$ is always residual, any two hypercyclic operators (on the same space) have a common hypercyclic vector.
Common lineability

Since the set $HC(T)$ is always residual, any two hypercyclic operators (on the same space) have a common hypercyclic vector.

So can two operators share a dense linear subspace (apart from 0) of hypercyclic vectors?
Common lineability

Since the set $HC(\mathcal{T})$ is always residual, any two hypercyclic operators (on the same space) have a common hypercyclic vector.

So can two operators share a dense linear subspace (apart from 0) of hypercyclic vectors?

Problem (Aron 2001)

Do the operators D and T_1 admit a dense linear subspace of $H(\mathbb{C})$ so that each non-zero vector in the subspace is hypercyclic for D and for T_1?
Common lineability

Since the set $HC(T)$ is always residual, any two hypercyclic operators (on the same space) have a common hypercyclic vector.

So can two operators share a dense linear subspace (apart from 0) of hypercyclic vectors?

Problem (Aron 2001)

Do the operators D and T_1 admit a dense linear subspace of $H(\mathbb{C})$ so that each non-zero vector in the subspace is hypercyclic for D and for T_1?

Grivaux observed in 2003 that the answer is yes as a consequence of the proof of the Herrero-Bourdon-Bès theorem since the two operators commute.
But she proved that the result remains true even if the operators do not commute:

Theorem (Grivaux 2003)

Let T_ν, $\nu \geq 1$, be hypercyclic operators on a Banach space X. Then there exists a dense linear subspace of X all of whose non-zero vectors are hypercyclic for any T_ν, $\nu \geq 1$.

The proof uses the Baire category theorem on the space $B(X)$ of bounded linear operators on X.
Can one be more ambitious:

Definition

A hypercyclic subspace for an operator T on X is an infinite-dimensional closed subspace of X such that each of its non-zero vectors is hypercyclic for T. In other words, $\text{HC}(T)$ is spaceable if and only if T admits a hypercyclic subspace.
Spaceability

Can one be more ambitious:

Does $HC(T)$ even contain a **closed** subspace (apart from 0)?
Spaceability

Can one be more ambitious:

Does $HC(T)$ even contain a closed subspace (apart from 0)?

Of course, one has to drop density, because otherwise one would have that $X \setminus \{0\} = HC(T)$, which is rarely the case.
Spaceability

Can one be more ambitious:

Does $HC(T)$ even contain a closed subspace (apart from 0)?

Of course, one has to drop density, because otherwise one would have that $X \setminus \{0\} = HC(T)$, which is rarely the case.

On the other hand, for finite-dimensional subspaces the answer is already known to be positive. So one defines the following.

Definition

A hypercyclic subspace for an operator T on X is an infinite-dimensional closed subspace of X such that each of its non-zero vectors is hypercyclic for T.

In other words, $HC(T)$ is spaceable if and only if T admits a hypercyclic subspace.

Karl Grosse-Erdmann (UMons)
The search for linearity
Celebrating Richard Aron
Spaceability

Can one be more ambitious:

Does $HC(T)$ even contain a closed subspace (apart from 0)?

Of course, one has to drop density, because otherwise one would have that $X \setminus \{0\} = HC(T)$, which is rarely the case.

On the other hand, for finite-dimensional subspaces the answer is already known to be positive. So one defines the following.

Definition

A hypercyclic subspace for an operator T on X is an infinite-dimensional closed subspace of X such that each of its non-zero vectors is hypercyclic for T.
Can one be more ambitious:

Does $HC(T)$ even contain a closed subspace (apart from 0)?

Of course, one has to drop density, because otherwise one would have that $X \setminus \{0\} = HC(T)$, which is rarely the case.

On the other hand, for finite-dimensional subspaces the answer is already known to be positive. So one defines the following.

Definition

A hypercyclic subspace for an operator T on X is an infinite-dimensional closed subspace of X such that each of its non-zero vectors is hypercyclic for T.

In other words, $HC(T)$ is spaceable if and only if T admits a hypercyclic subspace.
So, do hypercyclic subspaces exist?

The Rolewicz operators $T = \lambda B$, $|\lambda| > 1$, on ℓ^p, $p \geq 1$, or c_0, do not admit hypercyclic subspaces.
So, do hypercyclic subspaces exist?

Answer: Yes and no, that depends on the operator.
So, do hypercyclic subspaces exist?

Answer: Yes and no, that depends on the operator.

Some operators do not support hypercyclic subspaces.
So, do hypercyclic subspaces exist?

Answer: Yes and no, that depends on the operator.

Some operators do not support hypercyclic subspaces.

Theorem (Montes 1996)

The Rolewicz operators $T = \lambda B$, $|\lambda| > 1$, on ℓ^p, $p \geq 1$, or c_0, do not admit hypercyclic subspaces.
However, there are operators that do possess hypercyclic subspaces. For complex Banach spaces, after considerable work, the following characterization was found.

Theorem (González-León-Montes 2000)

Let T be an operator on a complex Banach space X such that $T \oplus T$ is hypercyclic. Then the following assertions are equivalent:

1. T has a hypercyclic subspace;
2. there exists an increasing sequence $(n_k)_{k}$ of positive integers and an infinite-dimensional closed subspace M_0 of X such that $T^{n_k}x \to 0$ for all $x \in M_0$.

The proof uses spectral theory in an essential way. We are still missing a characterization for real Banach spaces or for Fréchet spaces.
However, there are operators that do possess hypercyclic subspaces. For complex Banach spaces, after considerable work, the following characterization was found.

Theorem (González-León-Montes 2000)

Let T be an operator on a complex Banach space X such that $T \oplus T$ is hypercyclic. Then the following assertions are equivalent:

- T has a hypercyclic subspace;
- there exists an increasing sequence $(n_k)_k$ of positive integers and an infinite-dimensional closed subspace M_0 of X such that $T^{n_k} x \to 0$ for all $x \in M_0$.

The proof uses spectral theory in an essential way. We are still missing a characterization for real Banach spaces or for Fréchet spaces.
However, there are operators that do possess hypercyclic subspaces. For complex Banach spaces, after considerable work, the following characterization was found.

Theorem (González-León-Montes 2000)

Let T be an operator on a complex Banach space X such that $T \oplus T$ is hypercyclic. Then the following assertions are equivalent:

- T has a hypercyclic subspace;
- there exists an increasing sequence $(n_k)_k$ of positive integers and an infinite-dimensional closed subspace M_0 of X such that $T^{n_k}x \to 0$ for all $x \in M_0$.

The proof uses spectral theory in an essential way. We are still missing a characterization for real Banach spaces or for Fréchet spaces.
How about Fréchet space operators?

Theorem (Bernal-Montes 1995)

The translation operators $T_a, f \mapsto f(\cdot + a), a \neq 0$, on $H(\mathbb{C})$ admit hypercyclic subspaces.
So, among the classical hypercyclic operators we were still left with the differentiation operator D.

Problem (Aron, published in 2007)

Does the differentiation operator $D : f \rightarrow f'$, on $H(\mathbb{C})$ admit a hypercyclic subspace?

Richard: *"In a rough sense, the operator D behaves like the Rolewicz operator, and so a first guess might be that $HC(D)$ does not contain a closed infinite-dimensional subspace. But guesses are rarely publishable!"

The answer was found by Shkarin.

Theorem (Shkarin 2010)

Yes!
So, among the classical hypercyclic operators we were still left with the differentiation operator D.

Problem (Aron, published in 2007)

Does the differentiation operator $D : f \rightarrow f'$, on $H(\mathbb{C})$ admit a hypercyclic subspace?

Richard:

“In a rough sense, the operator D behaves like the Rolewicz operator,
So, among the classical hypercyclic operators we were still left with the differentiation operator D.

Problem (Aron, published in 2007)

Does the differentiation operator $D : f \rightarrow f'$, on $H(\mathbb{C})$ admit a hypercyclic subspace?

Richard:

“In a rough sense, the operator D behaves like the Rolewicz operator, and so a first guess might be that $HC(D)$ does not contain a closed infinite-dimensional subspace.”
So, among the classical hypercyclic operators we were still left with the differentiation operator D.

Problem (Aron, published in 2007)

Does the differentiation operator $D : f \rightarrow f'$, on $H(\mathbb{C})$ admit a hypercyclic subspace?

Richard:

“In a rough sense, the operator D behaves like the Rolewicz operator, and so a first guess might be that $HC(D)$ does not contain a closed infinite-dimensional subspace. But guesses are rarely publishable!”
So, among the classical hypercyclic operators we were still left with the differentiation operator D.

Problem (Aron, published in 2007)

Does the differentiation operator $D : f \rightarrow f'$, on $H(\mathbb{C})$ admit a hypercyclic subspace?

Richard:

“In a rough sense, the operator D behaves like the Rolewicz operator, and so a first guess might be that $HC(D)$ does not contain a closed infinite-dimensional subspace. But guesses are rarely publishable!”

The answer was found by Shkarin.

Theorem (Shkarin 2010)

Yes!
In fact, one can unify the results of Bernal-Montes and Shkarin. Any translation operator is simply a function of the differentiation operator:

$$T_a = \exp(aD).$$
In fact, one can unify the results of Bernal-Montes and Shkarin. Any translation operator is simply a function of the differentiation operator:

$$T_a = \exp(aD).$$

More generally, if

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n$$

is an entire function of exponential type, that is, there are $M, A > 0$ such that $|\varphi(z)| \leq Me^{A|z|}$ for all $z \in \mathbb{C}$, then

$$\varphi(D)f = \sum_{n=0}^{\infty} a_n D^n f$$

defines an operator $\varphi(D)$ on $H(\mathbb{C})$.

Godefroy and Shapiro had shown in 1991 that, for any non-constant entire function φ of exponential type, the operator $\varphi(D)$ is hypercyclic.
In fact, one can unify the results of Bernal-Montes and Shkarin. Any translation operator is simply a function of the differentiation operator:

\[T_a = \exp(aD). \]

More generally, if

\[\varphi(z) = \sum_{n=0}^{\infty} a_n z^n \]

is an entire function of exponential type, that is, there are \(M, A > 0 \) such that \(|\varphi(z)| \leq Me^{A|z|} \) for all \(z \in \mathbb{C} \), then

\[\varphi(D)f = \sum_{n=0}^{\infty} a_n D^n f \]

defines an operator \(\varphi(D) \) on \(H(\mathbb{C}) \).

Godefroy and Shapiro had shown in 1991 that, for any non-constant entire function \(\varphi \) of exponential type, the operator \(\varphi(D) \) is hypercyclic.
Thus the following generalizes Bernal-Montes.

Theorem (Petersson 2006)

If φ is an entire function of exponential type that is not a polynomial, then $\varphi(D)$ admits a hypercyclic subspace.
Thus the following generalizes Bernal-Montes.

Theorem (Petersson 2006)

If \(\varphi \) is an entire function of exponential type that is not a polynomial, then \(\varphi(D) \) admits a hypercyclic subspace.

The following generalizes Shkarin and thus completes the picture.

Theorem (Menet 2014)

For any non-constant polynomial \(P \), the operator \(P(D) \) admits a hypercyclic subspace.
Thus the following generalizes Bernal-Montes.

Theorem (Petersson 2006)

If φ is an entire function of exponential type that is not a polynomial, then $\varphi(D)$ admits a hypercyclic subspace.

The following generalizes Shkarin and thus completes the picture.

Theorem (Menet 2014)

For any non-constant polynomial P, the operator $P(D)$ admits a hypercyclic subspace.

In fact, Menet has obtained powerful necessary conditions and sufficient conditions for Fréchet space operators to have hypercyclic subspaces.
Common spaceability

Aron et al. present a counterexample \(\ell_2 \oplus \ell_2 \) of the form

\[
T_1 = (I + Bw) \oplus 2B \\
T_2 = 2B \oplus (I + Bw)
\]

where \(Bw \) is a certain weighted backward shift.
Common spaceability

R. Aron, J. Bès, F. León and A. Peris 2005 address the natural question of common spaceability:

If two operators on the same space admit hypercyclic subspaces do they have a common hypercyclic subspace?

Aron et al. present a counterexample $\ell^2 \oplus \ell^2$ of the form $T_1 = (I + Bw) \oplus 2B$ and $T_2 = 2B \oplus (I + Bw)$, where Bw is a certain weighted backward shift.
R. Aron, J. Bès, F. León and A. Peris 2005 address the natural question of common spaceability:

If two operators on the same space admit hypercyclic subspaces do they have a common hypercyclic subspace?
R. Aron, J. Bès, F. León and A. Peris 2005 address the natural question of common spaceability:

If two operators on the same space admit hypercyclic subspaces do they have a common hypercyclic subspace?

Aron et al. present a counterexample $\ell^2 \oplus \ell^2$ of the form

$$T_1 = (I + B_w) \oplus 2B \quad \text{and} \quad T_2 = 2B \oplus (I + B_w),$$

where B_w is a certain weighted backward shift.
So one needs to impose a condition involving all operators concerned.
So one needs to impose a condition involving all operators concerned.

Theorem (Aron-Bès-León-Peris 2005)

Let $T_\nu, \nu \geq 1$, be operators on a Banach X. If there exists an increasing sequence $(n_k)_k$ of positive integers such that

- each $T_\nu, \nu \geq 1$, satisfies the Hypercyclicity Criterion for (n_k),
- there is an infinite-dimensional closed subspace M_0 of X such that $T_\nu^{n_k}x \to 0$ for all $x \in M_0$ and all $\nu \geq 1$,

then the operators $T_\nu, \nu \geq 1$, admit a common hypercyclic subspace.
So one needs to impose a condition involving all operators concerned.

Theorem (Aron-Bès-León-Peris 2005)

Let \(T_\nu, \nu \geq 1 \), be operators on a Banach \(X \). If there exists an increasing sequence \((n_k)_k\) of positive integers such that

- each \(T_\nu, \nu \geq 1 \), satisfies the Hypercyclicity Criterion for \((n_k)\),
- there is an infinite-dimensional closed subspace \(M_0 \) of \(X \) such that \(T_{\nu}^{n_k} x \to 0 \) for all \(x \in M_0 \) and all \(\nu \geq 1 \),

then the operators \(T_\nu, \nu \geq 1 \), admit a common hypercyclic subspace.

The result remains true for Fréchet spaces whose topology is induced by a sequence of norms.

Example

Any two translation operators \(T_a, T_b, a, b \neq 0 \), on \(H(\mathbb{C}) \) have a common hypercyclic subspace.
So one needs to impose a condition involving all operators concerned.

Theorem (Aron-Bès-León-Peris 2005)

Let T_ν, $\nu \geq 1$, be operators on a Banach X. If there exists an increasing sequence $(n_k)_k$ of positive integers such that
- each T_ν, $\nu \geq 1$, satisfies the Hypercyclicity Criterion for (n_k),
- there is an infinite-dimensional closed subspace M_0 of X such that $T_\nu^{n_k} x \to 0$ for all $x \in M_0$ and all $\nu \geq 1$,

then the operators T_ν, $\nu \geq 1$, admit a common hypercyclic subspace.

The result remains true for Fréchet spaces whose topology is induced by a sequence of norms.

Example

Any two translation operators T_a, T_b, $a, b \neq 0$, on $H(\mathbb{C})$ have a common hypercyclic subspace.

It seems to be not known if D and T_a have a common hypercyclic subspace on $H(\mathbb{C})$...
Algebrability

Having found large subspaces of hypercyclic vectors for many operators, it is natural to look for algebras of such vectors – provided the Banach or Fréchet space has an algebraic structure.

Definition

A hypercyclic algebra for an operator T on X is a subalgebra of X so that each of its non-zero vectors is hypercyclic for T.

The research in this area was initiated by R. Aron.

An easier question is whether there is a hypercyclic vector x so that each power x^k, $k \geq 1$, remains hypercyclic.
Algebrability

Having found large subspaces of hypercyclic vectors for many operators, it is natural to look for algebras of such vectors – provided the Banach or Fréchet space has an algebraic structure.

Definition

A *hypercyclic algebra* for an operator T on X is a subalgebra of X so that each of its non-zero vectors is hypercyclic for T.

The research in this area was initiated by R. Aron. An easier question is whether there is a hypercyclic vector x so that each power x^k, $k \geq 1$, remains hypercyclic.
Algebrability

Having found large subspaces of hypercyclic vectors for many operators, it is natural to look for algebras of such vectors – provided the Banach or Fréchet space has an algebraic structure.

Definition

A hypercyclic algebra for an operator T on X is a subalgebra of X so that each of its non-zero vectors is hypercyclic for T.

The research in this area was initiated by R. Aron.
Algebrability

Having found large subspaces of hypercyclic vectors for many operators, it is natural to look for algebras of such vectors – provided the Banach or Fréchet space has an algebraic structure.

Definition

A hypercyclic algebra for an operator T on X is a subalgebra of X so that each of its non-zero vectors is hypercyclic for T.

The research in this area was initiated by R. Aron.

An easier question is whether there is a hypercyclic vector x so that each power x^k, $k \geq 1$, remains hypercyclic.
The following is a striking application of Hurwitz’s theorem.

Theorem (Aron-Conejero-Peris-Seoane 2007)

Let T_a, $a \neq 0$, be a translation operator on $H(\mathbb{C})$, let $f \in H(\mathbb{C})$, $k \geq 1$. If

$$g \in \text{orb}(f^k, T_a)$$

then the order of each zero of g is a multiple of k.

In particular, no square f^2 can be hypercyclic.
The following is a striking application of Hurwitz’s theorem.

Theorem (Aron-Conejero-Peris-Seoane 2007)

Let T_a, $a \neq 0$, be a translation operator on $H(\mathbb{C})$, let $f \in H(\mathbb{C})$, $k \geq 1$. If

$$g \in \text{orb}(f^k, T_a)$$

then the order of each zero of g is a multiple of k. In particular, no square f^2 can be hypercyclic.

The authors have a partial positive result for the differentiation operator D on $H(\mathbb{C})$.

Theorem (Aron-Conejero-Peris-Seoane 2007)

There is a function $f \in H(\mathbb{C})$ such that each power f^k, $k \geq 1$, is hypercyclic for D. The set of such functions is residual in $H(\mathbb{C})$.
But the full question is that for the existence of a hypercyclic algebra:

Problem (Aron 2007)

Does D admit a hypercyclic algebra? In other words, is there an entire function f so that any function of the form

\[\sum_{k=0}^{n} a_k f^k \neq \text{const.} \]

is hypercyclic for D?
But the full question is that for the existence of a hypercyclic algebra:

Problem (Aron 2007)

Does D admit a hypercyclic algebra? In other words, is there an entire function f so that any function of the form

$$\sum_{k=0}^{n} a_k f^k \neq \text{const.}$$

is hypercyclic for D?

The positive answer was given independently in two publications.

Theorem (Bayart-Matheron 2009, Shkarin 2010)

Yes!
We know from Godefroy and Shapiro that for any non-constant entire function φ of exponential type, $\varphi(D)$ is also hypercyclic. Now, $T_a = \exp(aD)$ does not have a hypercyclic algebra, so it is natural to restrict attention to polynomials.

Problem (Aron)

Does $P(D)$, P a non-constant polynomial, admit a hypercyclic algebra?
We know from Godefroy and Shapiro that for any non-constant entire function \(\varphi \) of exponential type, \(\varphi(D) \) is also hypercyclic. Now, \(T_a = \exp(aD) \) does not have a hypercyclic algebra, so it is natural to restrict attention to polynomials.

Problem (Aron)

Does \(P(D) \), \(P \) a non-constant polynomial, admit a hypercyclic algebra?

This question has recently been studied.

Theorem (Bès-Conejero-Papathanasiou, JMAA 15 Jan. 2017)

Yes, if \(P(0) = 0 \)!
One may study lineability in Linear Dynamics in yet another way.

If T is a hypercyclic operator on a Banach space then necessarily $\|T\| > 1$. So no operator can have all its (non-zero) multiples hypercyclic.

However, for the differentiation operator D on the Fréchet space $H(C)$, every operator λD, $\lambda \neq 0$, is hypercyclic.

Problem (Aron, no place no date) If X is a separable non-normable Fréchet space, is the set of hypercyclic operators lineable?

The specific question if every such Fréchet space admits an operator T such that λT is hypercyclic for any $\lambda \neq 0$ was published by Bonet (2010).
Lineability

One may study lineability in Linear Dynamics in yet another way.

If T is a hypercyclic operator on a Banach space then necessarily $\|T\| > 1$. So no operator can have all its (non-zero) multiples hypercyclic.
Lineability

One may study lineability in Linear Dynamics in yet another way.

If T is a hypercyclic operator on a Banach space then necessarily $\|T\| > 1$. So no operator can have all its (non-zero) multiples hypercyclic.

However, for the differentiation operator D on the Fréchet space $H(\mathbb{C})$, every operator λD, $\lambda \neq 0$, is hypercyclic.
Lineability

One may study lineability in Linear Dynamics in yet another way.

If T is a hypercyclic operator on a Banach space then necessarily $\|T\| > 1$. So no operator can have all its (non-zero) multiples hypercyclic.

However, for the differentiation operator D on the Fréchet space $H(\mathbb{C})$, every operator λD, $\lambda \neq 0$, is hypercyclic.

Problem (Aron, no place no date)

If X is a separable non-normable Fréchet space, is the set of hypercyclic operators lineable?
Lineability

One may study lineability in Linear Dynamics in yet another way.

If T is a hypercyclic operator on a Banach space then necessarily $\|T\| > 1$. So no operator can have all its (non-zero) multiples hypercyclic.

However, for the differentiation operator D on the Fréchet space $H(\mathbb{C})$, every operator λD, $\lambda \neq 0$, is hypercyclic.

Problem (Aron, no place no date)

If X is a separable non-normable Fréchet space, is the set of hypercyclic operators lineable?

The specific question if every such Fréchet space admits an operator T such that λT is hypercyclic for any $\lambda \neq 0$ was published by Bonet (2010).
Richard’s publications in Linear Dynamics

A personal remark

In the last 20 years, when I met Richard at conferences, I was often reminded of the German fairy tale

Der Hase und der Igel
A personal remark
In the last 20 years, when I met Richard at conferences, I was often reminded of the German fairy tale

Der Hase und der Igel

In a race between the hedgehog and the hare, the hedgehog wins by employing a trick.

Karl Grosse-Erdmann (UMons)

The search for linearity

Celebrating Richard Aron 25 / 27
A personal remark

In the last 20 years, when I met Richard at conferences, I was often reminded of the German fairy tale

Der Hase und der Igel

In a race between the hedgehog and the hare, the hedgehog wins by employing a trick.

He positions his wife at the endpoint of the race, and when the hare arrives there she comes forward, saying

Bin schon hier (I am here already)
In the past I very often felt like the hare when I went to a conference, be it in Spain, in the US, or at other places: Richard was already there!

Of course, the analogy breaks down there. First, Richard didn’t need to ask Eleanor to stand in for him. And, most importantly, I was always delighted to meet him.

I am looking forward to many more of the Hase-und-Igel moments in the future.
In the past I very often felt like the hare when I went to a conference, be it in Spain, in the US, or at other places: Richard was already there!

Of course, the analogy breaks down there. First, Richard didn’t need to ask Eleanor to stand in for him. And, most importantly, I was always delighted to meet him.

I am looking forward to many more of the Hase-und-Igel moments in the future.
In the past I very often felt like the hare when I went to a conference, be it in Spain, in the US, or at other places: Richard was already there!

Of course, the analogy breaks down there. First, Richard didn’t need to ask Eleanor to stand in for him. And, most importantly, I was always delighted to meet him.

I am looking forward to many more of the *Hase-und-Igel* moments in the future.