Problem 1. Prove that
\[1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}. \]

Problem 2. Prove that
\[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \geq \sqrt{n}, \]
for all \(n \in \mathbb{N} \).

Problem 3. (Extra) Prove that for \(n \geq 5 \)
\[\frac{n^n}{3^n} \leq n! \leq \frac{n^n}{2^n}. \]

Problem 4. Consider a set \(A \). We say \#A = 0 if \(A \) is the empty set and we say that \#A = n if there is a bijection \(f : A \to \{1, \ldots, n\} \). We say \(A \) is finite if \(A \) is empty or \#A = n for some natural number \(n \). Please, show that \#A is well defined, i.e. for finite set \(A \) there is only one number \(n \) such that \#A = n. (hint: You may use a book or any other source)

Problem 5. Let \(A \) and \(B \) be a countable sets show that \(A \cap B \) is also a countable set.

Problem 6. Consider a set \(S \) whose elements are nonoverlapping intervals of length 1 (i.e. for any \([a_1, b_1] \in S \) and \([a_2, b_2] \in S \) \([a_1, b_1] \cap [a_2, b_2] = \emptyset \) and \(b_1 - a_1 = b_2 - a_2 = 1 \)). PLEASE SHOW THAT \(S \) is a countable set.