Problem 1. Use \(\varepsilon - \delta \) definition to show the continuity of function \(f(x) = \frac{1}{x+1} \) at point \(x = 2 \).

Problem 2. Suppose that \(f \) is a continuous function on \([0, 1]\) such that \(f(r) = 0 \) for every rational number \(r \). Prove that \(f(x) = 0 \) for all \(x \in [0, 1] \).

Problem 3. Suppose that \(f \) and \(g \) are continuous function on \([0, 1]\) such that \(f(r) = g(r) \) for every rational number \(r \). Prove that \(f(x) = g(x) \) for all \(x \in [0, 1] \).

Problem 4. Show that the function
\[
f(x) = \frac{\sqrt{x+1}}{\sqrt{1+\sqrt{x}}}
\]
is a continuous function for \(x \in [0, \infty) \).

Problem 5. Show an example of bounded set \(A \) and a function \(f \) continuous on \(A \), such that \(f \) is unbounded function on \(A \).

Problem 6. Prove that if
\[
|f(x) - f(y)| \leq |x - y|^2
\]
for all \(x, y \) in \([0, 1]\) then \(f(x) \) is a continues function on \([0, 1]\).