Corona and cluster value problems in infinite-dimensional spaces

Sofía Ortega Castillo

Department of Mathematics
Texas A&M University

April 13, 2014
Informal Analysis Seminar, Universality Weekend
Department of Mathematical Sciences at Kent State University
Outline

- Introduction: Main Concepts
- Our Cluster Value Theorems
- Open Cluster Value Problems and Related Questions
- References
Outline

- Introduction: Main Concepts
- Our Cluster Value Theorems
- Open Cluster Value Problems and Related Questions
- References
Outline

- Introduction: Main Concepts
- Our Cluster Value Theorems
- Open Cluster Value Problems and Related Questions
- References
Outline

- Introduction: Main Concepts
- Our Cluster Value Theorems
- Open Cluster Value Problems and Related Questions
- References
Given a Banach space X with B its open unit ball, we are interested in studying certain Banach algebras of bounded analytic functions on B, that contain X^* (the continuous linear functionals on X) and 1. $H(B)$ will denote any such algebra.

Remark

$\forall x^* \in X^*, x^* : B \rightarrow \mathbb{C}$ acts linearly and continuously, thus each x^* is analytic and bounded.
Introduction: Main Concepts

Given a Banach space X with B its open unit ball, we are interested in studying certain Banach algebras of bounded analytic functions on B, that contain X^* (the continuous linear functionals on X) and 1. $H(B)$ will denote any such algebra.

Remark

$\forall x^* \in X^*$, $x^* : B \rightarrow \mathbb{C}$ acts linearly and continuously, thus each x^* is analytic and bounded.
Examples of Banach algebras $H(B)$:

- $H^\infty(B)$: all bounded analytic functions on B.
- Two generalizations of the disk algebra:
 - $A_u(B)$: bounded and uniformly continuous analytic functions on B.
 - $A(B)$: uniform limits on B of polynomials in the functions in X^*.
Examples of Banach algebras $H(B)$:

- $H^\infty(B)$: all bounded analytic functions on B.
- Two generalizations of the disk algebra:
 - $A_u(B)$: bounded and uniformly continuous analytic functions on B.
 - $A(B)$: uniform limits on B of polynomials in the functions in X^\ast.

S. Ortega Castillo (TAMU)
Examples of Banach algebras $H(B)$:

- $H^\infty(B)$: all bounded analytic functions on B.
- Two generalizations of the disk algebra:
 - $A_u(B)$: bounded and uniformly continuous analytic functions on B.
 - $A(B)$: uniform limits on B of polynomials in the functions in X^*.

Examples of Banach algebras $H(B)$:

- $H^\infty(B)$: all bounded analytic functions on B.
- Two generalizations of the disk algebra:
 - $A_u(B)$: bounded and uniformly continuous analytic functions on B.
 - $A(B)$: uniform limits on B of polynomials in the functions in X^*.
Examples of Banach algebras $H(B)$:

- $H^\infty(B)$: all bounded analytic functions on B.
- Two generalizations of the disk algebra:
 - $A_u(B)$: bounded and uniformly continuous analytic functions on B.
 - $A(B)$: uniform limits on B of polynomials in the functions in X^*.
Introduction: Main Concepts

One of the most important topics in the study of Banach algebras $H(B)$ is the study of its set of characters, the nonzero algebra homomorphisms from $H(B)$ to \mathbb{C}, called the spectrum of $H(B)$, and denoted by $M_{H(B)}$.

The study of the spectrum is simplified by fibering it over \bar{B}^{**} (the closed unit ball of X^{**}) via the surjective mapping $\pi : M_{H(B)} \rightarrow \bar{B}^{**}$ given by $\pi(\tau) = \tau|_{X^*}$.
One of the most important topics in the study of Banach algebras $H(B)$ is the study of its set of characters, the nonzero algebra homomorphisms from $H(B)$ to \mathbb{C}, called the spectrum of $H(B)$, and denoted by $M_{H(B)}$.

The study of the spectrum is simplified by fibering it over \overline{B}^{**} (the closed unit ball of X^{**}) via the surjective mapping $\pi : M_{H(B)} \to \overline{B}^{**}$ given by $\pi(\tau) = \tau|_{X^*}$.
One of the most important topics in the study of Banach algebras $H(B)$ is the study of its set of characters, the nonzero algebra homomorphisms from $H(B)$ to \mathbb{C}, called the spectrum of $H(B)$, and denoted by $M_{H(B)}$.

The study of the spectrum is simplified by fibering it over \bar{B}^{**} (the closed unit ball of X^{**}) via the surjective mapping $\pi : M_{H(B)} \to \bar{B}^{**}$ given by $\pi(\tau) = \tau|_{X^*}$.
One of the most important topics in the study of Banach algebras $H(B)$ is the study of its set of characters, the nonzero algebra homomorphisms from $H(B)$ to \mathbb{C}, called the spectrum of $H(B)$, and denoted by $M_{H(B)}$.

The study of the spectrum is simplified by fibering it over \bar{B}^{**} (the closed unit ball of X^{**}) via the surjective mapping $\pi : M_{H(B)} \to \bar{B}^{**}$ given by $\pi(\tau) = \tau|_{X^*}$.
Given $f \in H(B)$, the Gelfand Transform of f is the continuous map

$$\hat{f} : M_{H(B)} \rightarrow \mathbb{C}$$

given by $\tau \mapsto \tau(f)$.

Note: The Gelfand Transform is a generalization of the Fourier Transform for $L_1(\mathbb{R})$ under convolution.
Given $f \in H(B)$, the Gelfand Transform of f is the continuous map

\[\hat{f} : M_{H(B)} \rightarrow \mathbb{C} \text{ given by } \tau \mapsto \tau(f). \]

Note: The Gelfand Transform is a generalization of the Fourier Transform for $L_1(\mathbb{R})$ under convolution.
Given $f \in H(B)$, the Gelfand Transform of f is the continuous map

$$\hat{f} : M_{H(B)} \to \mathbb{C} \text{ given by } \tau \mapsto \tau(f).$$

Note: The Gelfand Transform is a generalization of the Fourier Transform for $L_1(\mathbb{R})$ under convolution.
Big open problems in the study of algebras $H(B)$:

Corona problem: Is B dense in $M_{H(B)}$ (in the w^* topology)?

Remark

$B \subset M_{H(B)}$ via $\delta : B \to M_{H(B)}$ such that $x \mapsto \delta_x$, where $\delta_x : H(B) \to \mathbb{C}$ is defined by $f \mapsto f(x)$.

S. Ortega Castillo (TAMU)
Introduction: Main Concepts

Big open problems in the study of algebras $H(B)$:

Corona problem: Is B dense in $M_{H(B)}$ (in the w^* topology)?

Remark

$B \subset M_{H(B)}$ via $\delta : B \to M_{H(B)}$ such that $x \mapsto \delta_x$, where $\delta_x : H(B) \to \mathbb{C}$ is defined by $f \mapsto f(x)$.
Big open problems in the study of algebras $H(B)$:

Corona problem: Is B dense in $M_{H(B)}$ (in the w^* topology)?

Remark

$B \subset M_{H(B)}$ via $\delta : B \to M_{H(B)}$ such that $x \mapsto \delta_x$, where $\delta_x : H(B) \to \mathbb{C}$ is defined by $f \mapsto f(x)$.
Results related to Corona problem:

- Carleson, ’62: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- Gamelin, ’70; Garnett and Jones, ’85: Corona theorems for other planar domains.
- Sibony, ’87: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- Sibony, ’93: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.
Results related to Corona problem:

- **Carleson, ’62**: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- **Gamelin, ’70; Garnett and Jones, ’85**: Corona theorems for other planar domains.
- **Sibony, ’87**: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- **Sibony, ’93**: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.
Results related to Corona problem:
- Carleson, ’62: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- Gamelin, ’70; Garnett and Jones, ’85: Corona theorems for other planar domains.
- Sibony, ’87: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- Sibony, ’93: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.
Results related to Corona problem:

- **Carleson, ’62**: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- **Gamelin, ’70; Garnett and Jones, ’85**: Corona theorems for other planar domains.
- **Sibony, ’87**: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- **Sibony, ’93**: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.

Introduction: Main Concepts

Results related to Corona problem:

- Carleson, ’62: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- Gamelin, ’70; Garnett and Jones, ’85: Corona theorems for other planar domains.
- Sibony, ’87: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- Sibony, ’93: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.
Results related to Corona problem:

- Carleson, ’62: Corona theorem for the unit disk $\Delta \subset \mathbb{C}$.
- Gamelin, ’70; Garnett and Jones, ’85: Corona theorems for other planar domains.
- Sibony, ’87: Pseudoconvex counterexample in \mathbb{C}^3 to Corona problem.
- Sibony, ’93: Pseudoconvex and strictly pseudoconvex (except at one point) counterexample in \mathbb{C}^2 to Corona problem.

Corona problem open for the unit ball and polydisk in \mathbb{C}^n for $n \geq 2$.
Another set of big open problems in the study of algebras $H(B)$: Cluster value problems.

The *cluster value theorem for $H(B)$* asserts that, for a given $x^{**} \in \overline{B}^{**}$, the sets of cluster values

$$Cl_B(f, x^{**}) := \{ \lambda : f(x_\alpha) \to \lambda, \; x_\alpha \overset{w^*}{\to} x^{**} \}$$

coincides with the Gelfand transform of f evaluated on the fiber $M_{x^{**}}(B) := \pi^{-1}(x^{**})$,

$$\hat{f}(M_{x^{**}}(B)) = \{ \tau(f) : \tau \in M_{x^{**}} \},$$

for all $f \in H(B)$.
Another set of big open problems in the study of algebras $H(B)$: **Cluster value problems.**

The *cluster value theorem for $H(B)$* asserts that, for a given $x^{**} \in \bar{B}^{**}$, the sets of cluster values

$$Cl_B(f, x^{**}) := \{ \lambda : f(x_\alpha) \to \lambda, \; x_\alpha \xrightarrow{w^*} x^{**} \}$$

coincides with the Gelfand transform of f evaluated on the fiber $M_{x^{**}}(B) := \pi^{-1}(x^{**})$,

$$\hat{f}(M_{x^{**}}(B)) = \{ \tau(f) : \tau \in M_{x^{**}} \},$$

for all $f \in H(B)$.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 9 / 22
Another set of big open problems in the study of algebras $H(B)$: **Cluster value problems.**

The *cluster value theorem for $H(B)$* asserts that, for a given $x^{**} \in \overline{B}^{**}$, the sets of cluster values

$$Cl_B(f, x^{**}) := \{ \lambda : f(x_\alpha) \to \lambda, \ x_\alpha \xrightarrow{w^*} x^{**} \}$$

coincides with the Gelfand transform of f evaluated on the fiber $M_{x^{**}}(B) := \pi^{-1}(x^{**})$,

$$\hat{f}(M_{x^{**}}(B)) = \{ \tau(f) : \tau \in M_{x^{**}} \}$$

for all $f \in H(B)$.
Another set of big open problems in the study of algebras $H(B)$: **Cluster value problems.**

The *cluster value theorem for $H(B)$* asserts that, for a given $x^{**} \in \overline{B}^{**}$, the sets of cluster values

$$Cl_B(f, x^{**}) := \{ \lambda : f(x_\alpha) \to \lambda, \ x_\alpha \xrightarrow{w^*} x^{**} \}$$

coincides with the Gelfand transform of f evaluated on the fiber $M_{x^{**}}(B) := \pi^{-1}(x^{**})$,

$$\hat{f}(M_{x^{**}}(B)) = \{ \tau(f) : \tau \in M_{x^{**}} \},$$

for all $f \in H(B)$.
Another set of big open problems in the study of algebras $H(B)$: **Cluster value problems.**

The *cluster value theorem for $H(B)$* asserts that, for a given $x^{**} \in \bar{B}^{**}$, the sets of cluster values

$$Cl_B(f, x^{**}) := \{ \lambda : f(x_\alpha) \to \lambda, \ x_\alpha \overset{w^*}{\to} x^{**} \}$$

coincides with the Gelfand transform of f evaluated on the fiber

$$M_{x^{**}}(B) := \pi^{-1}(x^{**}),$$

$$\hat{f}(M_{x^{**}}(B)) = \{ \tau(f) : \tau \in M_{x^{**}} \},$$

for all $f \in H(B)$.
Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B_{\mathbb{C}^n})$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof of this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B_{\mathbb{C}^n})$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof if this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
Introduction: Main Concepts

Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B_{\mathbb{C}^n})$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof of this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
Introduction: Main Concepts

Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B_{\mathbb{C}^n})$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof if this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B_{\mathbb{C}^n})$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof if this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
Results related to cluster value problems:

- Kakutani, ’55: Considers first cluster value problems for domains in \mathbb{C}.
- I. J. Schark, ’61: Cluster value theorem for $H(\Delta)$, Δ unit disk of \mathbb{C}.
- Gamelin, ’73: Cluster value theorem for $H(\Delta^n)$, Δ^n polydisk in \mathbb{C}^n.
- McDonald, ’79: Cluster value theorem for $H(B\mathbb{C}^n)$, and actually for $H(U)$ for U any strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary.

The proof if this last result uses a solution to a $\bar{\partial}$ problem in strongly pseudoconvex domains (Kerzman, ’71).
What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^{\infty}$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^{\infty} P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_{cf}(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \cdots, x)$ (and it is a constant function for $m = 0$).
What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^{\infty}$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^{\infty} P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_{cf}(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \cdots, x)$ (and it is a constant function for $m = 0$).
What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^\infty$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^\infty P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_c f(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \cdots, x)$ (and it is a constant function for $m = 0$).
What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^{\infty}$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^{\infty} P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_c f(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \cdots , x)$ (and it is a constant function for $m = 0$).
What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \rightarrow \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^{\infty}$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^{\infty} P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_{cf}(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \rightarrow \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \ldots, x)$ (and it is a constant function for $m = 0$).
Introduction: Main Concepts

What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^\infty$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^\infty P^m f(x) (y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_c f(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \ldots, x)$ (and it is a constant function for $m = 0$).
Introduction: Main Concepts

What happens when B is the unit ball of an infinite-dimensional Banach space? Let us first overview the basic theory of analytic functions on arbitrary Banach spaces.

Given U an open subset of a Banach space X, $f : U \to \mathbb{C}$ is analytic if for every $x \in U$ there exists $r > 0$ and continuous polynomials on X, $(P^m f(x))_{m=0}^\infty$, where $P^m f(x)$ is m-homogeneous, such that, if $\|y - x\| < r$ then $f(y) = \sum_{m=0}^\infty P^m f(x)(y - x)$, and the convergence is uniform on $B(x, r)$ (and $r_c f(x)$ is the supremum of such r).

An m-homogeneous polynomial \hat{L} on X, for $m \in \mathbb{N}$, is the restriction to the diagonal of a m-linear mapping $L : X^m \to \mathbb{C}$, i.e. $\hat{L}(x) = L(x, \ldots, x)$ (and it is a constant function for $m = 0$).
Introduction: Main Concepts

Theorem

Given $f : U \subset X \rightarrow Y$, TFAE:

- f is analytic,
- f is continuous and analytic on each complex line, i.e.

 $$
 \lambda \mapsto f(a + \lambda b) \text{ is analytic for all } a \in U \text{ and } b \neq 0 \in E,
 $$

 on $\{\zeta \in \mathbb{C} : a + \zeta b \in U\}$,
- f is Fréchet \mathbb{C}-differentiable.

Example

If $x_m^* \in X^*$ and $x_m^* \xrightarrow{w^*} 0$, then $\sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on X.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 12 / 22
Theorem

Given $f : U \subset X \rightarrow Y$, TFAE:

- f is analytic,
- f is continuous and analytic on each complex line, i.e.

 $\lambda \mapsto f(a + \lambda b)$ is analytic for all $a \in U$ and $b \neq 0 \in E$,

 on $\{\zeta \in \mathbb{C} : a + \zeta b \in U\}$,
- f is Fréchet \mathbb{C}-differentiable.

Example

If $x^*_m \in X^*$ and $x^*_m \xrightarrow{w^*} 0$, then $\sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on X.
Theorem

Given \(f : U \subset X \to Y \), TFAE:

- \(f \) is analytic,
- \(f \) is continuous and analytic on each complex line, i.e. \(\lambda \mapsto f(a + \lambda b) \) is analytic for all \(a \in U \) and \(b \neq 0 \in E \), on \(\{ \zeta \in \mathbb{C} : a + \zeta b \in U \} \),
- \(f \) is Fréchet \(\mathbb{C} \)-differentiable.

Example

If \(x_m^* \in X^* \) and \(x_m^* \xrightarrow{w^*} 0 \), then \(\sum_{m=0}^{\infty} (x_m^*)^n \) is analytic on \(X \).
Introduction: Main Concepts

Theorem

Given $f : U \subset X \to Y$, TFAE:

- f is analytic,
- f is continuous and analytic on each complex line, i.e.
 $$\lambda \mapsto f(a + \lambda b)$$
 is analytic for all $a \in U$ and $b \neq 0 \in E$,
- on $\{\zeta \in \mathbb{C} : a + \zeta b \in U\}$,
- f is Fréchet \mathbb{C}-differentiable.

Example

If $x_m^* \in X^*$ and $x_m^* \xrightarrow{w^*} 0$, then $\sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on X.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 12 / 22
Introduction: Main Concepts

Theorem

Given $f : U \subset X \to Y$, TFAE:

- f is analytic,
- f is continuous and analytic on each complex line, i.e.
 $$\lambda \mapsto f(a + \lambda b) \text{ is analytic for all } a \in U \text{ and } b \neq 0 \in E,$$
 on $\{\zeta \in \mathbb{C} : a + \zeta b \in U\}$,
- f is Fréchet \mathbb{C}-differentiable.

Example

If $x_m^* \in X^*$ and $x_m^* \xrightarrow{w^*} 0$, then $\sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on X.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 12 / 22
Introduction: Main Concepts

Properties of analytic functions that extend to ∞-dimensional setting:
Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,
- $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta| = r} \frac{f(a + \zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta| = r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{||z - a|| < r} \|f(z)\| \frac{||x - a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x_m^* \xrightarrow{w} 0$ and $\|x_m^*\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on all X but $r_c f(0) = 1$.

Introduction: Main Concepts

Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)\| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x^*_m)_m \subset X^*$ satisfies $x^*_m \xrightarrow{w^*} 0$ and $\|x^*_m\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on all X but $r_c f(0) = 1$.
Properties of analytic functions that extend to ∞-dimensional setting:

Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:

Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P_m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P_m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)|| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x^*_m \overset{w^*}{\rightarrow} 0$ and $||x_m^*|| = 1$ for all m. Then $f = \sum_{m=0}^{\infty}(x_m^*)^m$ is analytic on all X but $r c f(0) = 1$.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 13 / 22
Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \to Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} f(a+\zeta b) \frac{1}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $||P^m f(a)(b)|| \leq r^{-m} \sup_{|\zeta|=r} ||f(a+\zeta b)||$,
- $||f(x) - f(a)|| \leq 2 \sup_{||z-a||<r} ||f(z)|| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x^*_m)_m \subset X^*$ satisfies $x^*_m \overset{w^*}{\to} 0$ and $||x^*_m|| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on all X but $r_c f(0) = 1$.
Introduction: Main Concepts

Properties of analytic functions that extend to \(\infty\)-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:

Given \(f : U \subset X \rightarrow Y\) analytic, \(a \in U\), \(b \in X\), and \(r\) small enough,

1. \(P_m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta\) if \(\lambda \in r\Delta\) and \(m \in \mathbb{N}_0\),
2. \(\|P_m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|\),
3. \(\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)\| \frac{||x-a||}{r}\) if \(x \in B(a,r)\).

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that \((x^*_m)_m \subset X^*\) satisfies \(x^*_m \xrightarrow{w^*} 0\) and \(\|x^*_m\| = 1\) for all \(m\). Then \(f = \sum_{m=0}^{\infty} (x^*_m)^m\) is analytic on all \(X\) but \(r cf(0) = 1\).
Introduction: Main Concepts

Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \to Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P_m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P_m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)\| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x_m^* \xrightarrow{w^*} 0$ and $\|x_m^*\| = 1$ for all m. Then $f = \sum_{m=0}^\infty (x_m^*)^m$ is analytic on all X but $r_c f(0) = 1$.
Introduction: Main Concepts

Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f: U \subset X \to Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{|z-a|<r} \|f(z)\| \frac{|x-a|}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x_m^* \overset{w^*}{\to} 0$ and $\|x_m^*\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on all X but $r_c f(0) = 1$.

S. Ortega Castillo (TAMU)
Corona and cluster value p. in ∞-dim. spaces
04/13/2014 13 / 22
Properties of analytic functions that extend to ∞-dimensional setting:
Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \to Y$ analytic, $a \in U$, $b \in X$, and r small enough,

1. $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
2. $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
3. $\|f(x) - f(a)\| \leq 2 \sup_{\|z-a\|<r} \|f(z)\| \frac{\|x-a\|}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x^*_m)_m \subset X^*$ satisfies $x^*_m \xrightarrow{w^*} 0$ and $\|x^*_m\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on all X but $r_c f(0) = 1$.
Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \to Y$ analytic, $a \in U$, $b \in X$, and r small enough,

1. $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
2. $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
3. $\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)||\frac{|x-a|}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x_m^* \xrightarrow{w^*} 0$ and $\|x_m^*\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty}(x_m^*)^m$ is analytic on all X but $r_c f(0) = 1$.
Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:
Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,

- $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $||P^m f(a)(b)|| \leq r^{-m} \sup_{|\zeta|=r} ||f(a + \zeta b)||$,
- $||f(x) - f(a)|| \leq 2 \sup_{||z-a||<r} ||f(z)|| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x^*_m)_m \subset X^*$ satisfies $x^*_m \xrightarrow{w^*} 0$ and $||x^*_m|| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on all X but $r.cf(0) = 1$.
Introduction: Main Concepts

Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:

Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,

1. $P^m f(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a + \zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,

2. $\|P^m f(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|,$

3. $\|f(x) - f(a)\| \leq 2 \sup_{\|z-a\|<r} \|f(z)\| \frac{|x-a|}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x_m^*)_m \subset X^*$ satisfies $x_m^* \xrightarrow{w^*} 0$ and $\|x_m^*\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x_m^*)^m$ is analytic on all X but $r_cf(0) = 1$.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 13 / 22
Properties of analytic functions that extend to ∞-dimensional setting: Open Mapping Principle, Maximum Principle, Liouville’s Theorem.

More properties of analytic functions that extend:

Given $f : U \subset X \rightarrow Y$ analytic, $a \in U$, $b \in X$, and r small enough,
- $P^mf(a)(b) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(a+\zeta b)}{\zeta^{m+1}} d\zeta$ if $\lambda \in r\Delta$ and $m \in \mathbb{N}_0$,
- $\|P^mf(a)(b)\| \leq r^{-m} \sup_{|\zeta|=r} \|f(a + \zeta b)\|$,
- $\|f(x) - f(a)\| \leq 2 \sup_{||z-a||<r} \|f(z)\| \frac{||x-a||}{r}$ if $x \in B(a, r)$.

A property that does not extend: The radius of convergence of an analytic function at a point is not at least the distance of the point to the boundary of the domain.

Example

Suppose that $(x^*_m)_m \subset X^*$ satisfies $x^*_m \xrightarrow{w^*} 0$ and $\|x^*_m\| = 1$ for all m. Then $f = \sum_{m=0}^{\infty} (x^*_m)^m$ is analytic on all X but $r_{cf}(0) = 1$.
Back to Corona and cluster value problems:

When B is the unit ball of an infinite-dimensional Banach space, there are no positive solutions to the Corona problem.

Aron, Carando, Gamelin, Lasalle, Maestre, ’12 [1]:

- Cluster value theorem for $x = 0$ and $A_u(B)$, when X has a shrinking 1-unconditional basis.

Example

The previous condition is satisfied by ℓ_p for $1 < p < \infty$ and c_0, but not by ℓ_1, ℓ_∞ nor $L_p(0, 1)$ for $1 \leq p \neq 2 \leq \infty$.
Introduction: Main Concepts

Back to Corona and cluster value problems:

When B is the unit ball of an infinite-dimensional Banach space, there are no positive solutions to the Corona problem.

Aron, Carando, Gamelin, Lasalle, Maestre, ’12 [1]:

- Cluster value theorem for $x = 0$ and $A_u(B)$, when X has a shrinking 1-unconditional basis.

Example

The previous condition is satisfied by ℓ_p for $1 < p < \infty$ and c_0, but not by ℓ_1, ℓ_∞ nor $L_p(0, 1)$ for $1 \leq p \neq 2 \leq \infty$.
Back to Corona and cluster value problems:

When B is the unit ball of an infinite-dimensional Banach space, there are no positive solutions to the Corona problem.

Aron, Carando, Gamelin, Lasalle, Maestre, ’12 [1]:

- Cluster value theorem for $x = 0$ and $A_u(B)$, when X has a shrinking 1-unconditional basis.

Example

The previous condition is satisfied by ℓ_p for $1 < p < \infty$ and c_0, but not by ℓ_1, ℓ_∞ nor $L_p(0, 1)$ for $1 \leq p \neq 2 \leq \infty$.
Back to Corona and cluster value problems:

When B is the unit ball of an infinite-dimensional Banach space, there are no positive solutions to the Corona problem.

Aron, Carando, Gamelin, Lasalle, Maestre, ’12 [1]:

- Cluster value theorem for $x = 0$ and $A_u(B)$, when X has a shrinking 1-unconditional basis.

Example

The previous condition is satisfied by ℓ_p for $1 < p < \infty$ and c_0, but not by ℓ_1, ℓ_∞ nor $L_p(0, 1)$ for $1 \leq p \neq 2 \leq \infty$.
Back to Corona and cluster value problems:

When B is the unit ball of an infinite-dimensional Banach space, there are no positive solutions to the Corona problem.

Aron, Carando, Gamelin, Lasalle, Maestre, ’12 [1]:

- Cluster value theorem for $x = 0$ and $A_u(B)$, when X has a shrinking 1-unconditional basis.

Example

The previous condition is satisfied by ℓ_p for $1 < p < \infty$ and c_0, but not by ℓ_1, ℓ_∞ nor $L_p(0, 1)$ for $1 \leq p \neq 2 \leq \infty$.
Introduction: Main Concepts

- Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
- Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, ’98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, ’07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.
Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, ’98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, ’07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.
Introduction: Main Concepts

- Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
- Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, ’98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, ’07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.
Introduction: Main Concepts

- Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
- Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, ’98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, ’07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.
Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, ’98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, ’07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.

S. Ortega Castillo (TAMU) Corona and cluster value p. in ∞-dim. spaces 04/13/2014 15 / 22
Introduction: Main Concepts

- Cluster value theorem for $A_u(B)$ when X is a Hilbert space.
- Cluster value theorem for $H^\infty(B)$ when $X = c_0$.

Remark

Hilbert space and c_0 are infinite-dimensional analogues of the unit ball and the polydisk of Euclidean space.

More known cluster value theorems:

Farmer, '98: There is a cluster value theorem for each point in ∂B and $A_u(B)$, when B is the unit ball of a uniformly convex Banach space, like ℓ_p and L_p for $1 < p < \infty$; Acosta and Lourenzo, '07: There is a cluster value theorem for $A_u(B_{\ell_1})$ at each point in ∂B_{ℓ_1}.
Generalizing the ideas and techniques of Aron, Carando, Gamelin, Lasalle and Maestre, we proved:

Theorem (Johnson, O., ’13)

Suppose that for each finite-dimensional subspace E of X^* and $\epsilon > 0$ there exists a finite rank operator S on X so that $\|(I - S^*)|_E\| < \epsilon$ and $\|I - S\| = 1$. Then the cluster value theorem holds for $A_u(B)$ at 0.

Remark

If X is a Banach space with a shrinking reverse monotone Finite Dimensional Decomposition, we have a cluster value theorem for $A_u(B)$ at 0.
Generalizing the ideas and techniques of Aron, Carando, Gamelin, Lasalle and Maestre, we proved:

Theorem (Johnson, O., ’13)

Suppose that for each finite-dimensional subspace \(E \) of \(X^* \) and \(\epsilon > 0 \) there exists a finite rank operator \(S \) on \(X \) so that \(\| (I - S^*) |_E \| < \epsilon \) and \(\| I - S \| = 1 \). Then the cluster value theorem holds for \(A_u(B) \) at 0.

Remark

If \(X \) is a Banach space with a shrinking reverse monotone Finite Dimensional Decomposition, we have a cluster value theorem for \(A_u(B) \) at 0.
Generalizing the ideas and techniques of Aron, Carando, Gamelin, Lasalle and Maestre, we proved:

Theorem (Johnson, O., ’13)

Suppose that for each finite-dimensional subspace E of X^* and $\epsilon > 0$ there exists a finite rank operator S on X so that $\|(I - S^*)|_E\| < \epsilon$ and $\|I - S\| = 1$. Then the cluster value theorem holds for $A_u(B)$ at 0.

Remark

If X is a Banach space with a shrinking reverse monotone Finite Dimensional Decomposition, we have a cluster value theorem for $A_u(B)$ at 0.
Our Cluster Value Theorems

We also proved the following relationship with the help of Aron and Maestre:

Lemma (Aron, Maestre)

If Y is a closed finite-codimensional subspace of X and $f \in A_u(B)$, then $Cl_B(f, 0) = Cl_{B_Y}(f|_Y, 0)$, where B_Y is the unit ball of Y.

Since c is one-codimensional in c_0 and c_0 satisfies a cluster value theorem, the previous result suggests that c satisfies a cluster value theorem for $A_u(B)$.

It turns out that $A_u(B_c) = A(B_c)$ because c is isomorphic to c_0, so c indeed satisfies a cluster value theorem for $A_u(B_c)$.

Moreover, $A_u(B) = A(B)$ when $X = C(K)$ for any K compact, Hausdorff and dispersed, so X satisfies a cluster value theorem for $A_u(B)$.
Our Cluster Value Theorems

We also proved the following relationship with the help of Aron and Maestre:

Lemma (Aron, Maestre)

If Y is a closed finite-codimensional subspace of X and $f \in A_u(B)$, then $Cl_B(f,0) = Cl_{B_Y}(f|_Y,0)$, where B_Y is the unit ball of Y.

Since c is one-codimensional in c_0 and c_0 satisfies a cluster value theorem, the previous result suggests that c satisfies a cluster value theorem for $A_u(B)$.

It turns out that $A_u(B_c) = A(B_c)$ because c is isomorphic to c_0, so c indeed satisfies a cluster value theorem for $A_u(B_c)$.

Moreover, $A_u(B) = A(B)$ when $X = C(K)$ for any K compact, Hausdorff and dispersed, so X satisfies a cluster value theorem for $A_u(B)$.
We also proved the following relationship with the help of Aron and Maestre:

Lemma (Aron, Maestre)

If Y is a closed finite-codimensional subspace of X and $f \in A_u(B)$, then $\text{Cl}_B(f, 0) = \text{Cl}_{B_Y}(f|_Y, 0)$, where B_Y is the unit ball of Y.

Since c is one-codimensional in c_0 and c_0 satisfies a cluster value theorem, the previous result suggests that c satisfies a cluster value theorem for $A_u(B)$.

It turns out that $A_u(B_c) = A(B_c)$ because c is isomorphic to c_0, so c indeed satisfies a cluster value theorem for $A_u(B_c)$.

Moreover, $A_u(B) = A(B)$ when $X = C(K)$ for any K compact, Hausdorff and dispersed, so X satisfies a cluster value theorem for $A_u(B)$.
Our Cluster Value Theorems

We also proved the following relationship with the help of Aron and Maestre:

Lemma (Aron, Maestre)

If Y is a closed finite-codimensional subspace of X and $f \in A_u(B)$, then $\text{Cl}_B(f, 0) = \text{Cl}_{B_Y}(f|_Y, 0)$, where B_Y is the unit ball of Y.

Since c is one-codimensional in c_0 and c_0 satisfies a cluster value theorem, the previous result suggests that c satisfies a cluster value theorem for $A_u(B)$.

It turns out that $A_u(B_c) = A(B_c)$ because c is isomorphic to c_0, so c indeed satisfies a cluster value theorem for $A_u(B_c)$.

Moreover, $A_u(B) = A(B)$ when $X = C(K)$ for any K compact, Hausdorff and dispersed, so X satisfies a cluster value theorem for $A_u(B)$.
Our Cluster Value Theorems

We also proved the following relationship with the help of Aron and Maestre:

Lemma (Aron, Maestre)

If Y is a closed finite-codimensional subspace of X and $f \in A_u(B)$, then $\text{Cl}_B(f, 0) = \text{Cl}_{B_Y}(f|_Y, 0)$, where B_Y is the unit ball of Y.

Since c is one-codimensional in c_0 and c_0 satisfies a cluster value theorem, the previous result suggests that c satisfies a cluster value theorem for $A_u(B)$.

It turns out that $A_u(B_c) = A(B_c)$ because c is isomorphic to c_0, so c indeed satisfies a cluster value theorem for $A_u(B_c)$.

Moreover, $A_u(B) = A(B)$ when $X = C(K)$ for any K compact, Hausdorff and dispersed, so X satisfies a cluster value theorem for $A_u(B)$.
Our Cluster Value Theorems

Following the proof by Aron, Carando, Gamelin, Lasalle and Maestre that c_0 satisfies a cluster value theorem for $H^\infty(B)$, and using that $C(K)^* = \ell_1(K)$ when K is compact, Hausdorff and dispersed, we obtain a cluster value theorem for $H^\infty(B)$ when $X = C(K)$, and K is compact, Hausdorff and dispersed.

We consider the following in [2]: Given $f_0^{**} \in \overline{B}^{**}$, the cluster value problem for $H^\infty(B)$ over $A_u(B)$ at f_0^{**} asks whether for all $\psi \in H^\infty(B)$ and $\tau \in \mathcal{M}_{f_0^{**}}(B)$, can we find a net $(f_\alpha) \subset B$ such that $\psi(f_\alpha) \to \tau(\psi)$ and f_α converges to f_0^{**} in the polynomial-star topology (that we denote by $\tau(\psi) \in \text{Cl}_B(\psi, f_0^{**})$)?

Theorem

The cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at 0 is equivalent to the cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at any $f_0 \in B$, for $X = C(K)$.
Our Cluster Value Theorems

Following the proof by Aron, Carando, Gamelin, Lasalle and Maestre that c_0 satisfies a cluster value theorem for $H^\infty(B)$, and using that $C(K)^* = \ell_1(K)$ when K is compact, Hausdorff and dispersed, we obtain a cluster value theorem for $H^\infty(B)$ when $X = C(K)$, and K is compact, Hausdorff and dispersed.

We consider the following in [2]: Given $f_{0}^{**} \in \overline{B}^{**}$, the cluster value problem for $H^\infty(B)$ over $A_u(B)$ at f_{0}^{**} asks whether for all $\psi \in H^\infty(B)$ and $\tau \in M_{f_{0}^{**}}(B)$, can we find a net $(f_\alpha) \subset B$ such that $\psi(f_\alpha) \to \tau(\psi)$ and f_α converges to f_{0}^{**} in the polynomial-star topology (that we denote by $\tau(\psi) \in \text{Cl}_B(\psi, f_{0}^{**})$)?

Theorem

The cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at 0 is equivalent to the cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at any $f_0 \in B$, for $X = C(K)$.
Our Cluster Value Theorems

Following the proof by Aron, Carando, Gamelin, Lasalle and Maestre that c_0 satisfies a cluster value theorem for $H^\infty(B)$, and using that $C(K)^* = \ell_1(K)$ when K is compact, Hausdorff and dispersed, we obtain a cluster value theorem for $H^\infty(B)$ when $X = C(K)$, and K is compact, Hausdorff and dispersed.

We consider the following in [2]: Given $f_0^{**} \in \overline{B}^{**}$, the cluster value problem for $H^\infty(B)$ over $A_u(B)$ at f_0^{**} asks whether for all $\psi \in H^\infty(B)$ and $\tau \in \mathcal{M}f_0^{**}(B)$, can we find a net $(f_\alpha) \subset B$ such that $\psi(f_\alpha) \to \tau(\psi)$ and f_α converges to f_0^{**} in the polynomial-star topology (that we denote by $\tau(\psi) \in \text{Cl}_B(\psi,f_0^{**})$)?

Theorem

The cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at 0 is equivalent to the cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at any $f_0 \in B$, for $X = C(K)$.
Our Cluster Value Theorems

Following the proof by Aron, Carando, Gamelin, Lasalle and Maestre that c_0 satisfies a cluster value theorem for $H^\infty(B)$, and using that $C(K)^* = \ell_1(K)$ when K is compact, Hausdorff and dispersed, we obtain a cluster value theorem for $H^\infty(B)$ when $X = C(K)$, and K is compact, Hausdorff and dispersed.

We consider the following in [2]: Given $f_0^{**} \in \overline{B}^{**}$, the cluster value problem for $H^\infty(B)$ over $A_u(B)$ at f_0^{**} asks whether for all $\psi \in H^\infty(B)$ and $\tau \in M_{f_0^{**}}(B)$, can we find a net $(f_\alpha) \subset B$ such that $\psi(f_\alpha) \to \tau(\psi)$ and f_α converges to f_0^{**} in the polynomial-star topology (that we denote by $\tau(\psi) \in Cl_B(\psi,f_0^{**})$)?

Theorem

The cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at 0 is equivalent to the cluster value theorem of $H^\infty(B)$ over $A_u(B)$ at any $f_0 \in B$, for $X = C(K)$.
In [3] we prove that for any separable Banach space Y, a cluster value problem for $H(B_Y)$ ($H = H^\infty$ or $H = A_u$) can be reduced to a cluster value problem for $H(B_X)$ for some Banach space X that is an ℓ_1-sum of a sequence of finite-dimensional spaces.

In particular, if $H(B_{\ell_1})$ satisfies the cluster value theorem, then so does $H(B_{L_1})$.

S. Ortega Castillo (TAMU)
Corona and cluster value p. in ∞-dim. spaces
04/13/2014
19 / 22
In [3] we prove that for any separable Banach space Y, a cluster value problem for $H(B_Y)$ ($H = H^\infty$ or $H = A_u$) can be reduced to a cluster value problem for $H(B_X)$ for some Banach space X that is an ℓ_1-sum of a sequence of finite-dimensional spaces.

In particular, if $H(B_{\ell_1})$ satisfies the cluster value theorem, then so does $H(B_{L_1})$.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark
Lempert, '99: There is a solution to the $\overline{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\overline{\partial}$ problem in B_X for X uniformly convex?
If so, is it weakly continuous?

Remark
Kerzman, '71: There is a solution to the $\overline{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\bar{\partial}$ problem in B_X for X uniformly convex? If so, is it weakly continuous?

Remark

Kerzman, ’71: There is a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\bar{\partial}$ problem in B_X for X uniformly convex? If so, is it weakly continuous?

Remark

Kerzman, ’71: There is a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\bar{\partial}$ problem in B_X for X uniformly convex?
If so, is it weakly continuous?

Remark

Kerzman, ’71: There is a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\bar{\partial}$ problem in B_X for X uniformly convex? If so, is it weakly continuous?

Remark

Kerzman, ’71: There is a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Does the cluster value theorem hold for $H^\infty(B)$ or $A_u(B)$, when $B = B_{\ell_1}$ or $B = B_X$ and X is uniformly convex?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in B_{ℓ_1}.

Is the previous solution weakly continuous?

Is there a solution to the $\bar{\partial}$ problem in B_X for X uniformly convex? If so, is it weakly continuous?

Remark

Kerzman, ’71: There is a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in \mathbb{C}^n.
Is there a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in any Banach space?

Does the cluster value theorem for $H^\infty(B_{\ell_1^n})$ hold?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$.

Is the solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$ uniformly continuous?
Is there a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in any Banach space?

Does the cluster value theorem for $H^\infty(B_{\ell_1^n})$ hold?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$.

Is the solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$ uniformly continuous?
Is there a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in any Banach space?

Does the cluster value theorem for $H^\infty(B_{\ell_1^n})$ hold?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$.

Is the solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$ uniformly continuous?
Is there a solution to the $\bar{\partial}$ problem in strongly pseudoconvex domains in any Banach space?

Does the cluster value theorem for $H^\infty(B_{\ell_1^n})$ hold?

Remark

Lempert, ’99: There is a solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$.

Is the solution to the $\bar{\partial}$ problem in $B_{\ell_1^n}$ uniformly continuous?
References

References

