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From the papers:

• Three Problems in Search of a Measure, J. King, 1994
(Monthly)

• Poncelet’s Theorem, The Sendov Conjecture, and Blaschke
products (with U. Daepp and K. Voss, JMAA 2010)

• Numerical ranges of restricted shifts and unitary dilations (G.,
I. Chalendar and J. R. Partington, Operators and Matrices,
2010)

• The group of invariants, (G., I. Chalendar and J. R.
Partington)

With an applet done with Keith Taylor and Duncan Gillis
(Dalhousie) and an applet by Andrew Shaffer (Bucknell,
Lewisburg)



What does it mean for two problems to “be the same”?

Problem 1.[Rogawski] A spy uses a telescope to track a rocket
launched vertically from a launching pad 6 km away. At a certain
moment the angle θ between the telescope and the ground is equal
to π/3 and is changing at a rate of 0.9 rad/min. What is the
rocket’s velocity at that moment?
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What does it mean for two problems to be “the same”?

Problem 1.[Rogawski] A spy uses a telescope to track a rocket
launched vertically 6 km away. At a certain moment the angle θ
between the telescope and the ground is π/3 and changing at a
rate of 0.9 rad/min. What is the rocket’s velocity at that moment?

Problem 2. [Hughes-Hallett] An airplane, flying at 450 km/hr at
a constant altitude of 5 km, is approaching a camera mounted on
the ground. Let θ be the angle of elevation above the ground at
which the camera is pointed. When θ = π/3, how fast does the
camera have to rotate to keep the plane in view?
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Problem 3.[Rogawski] The minute hand of a clock is 8 cm long
and the hour hand is 5 cm long. How fast is the distance between
the tips of the hands changing at 3 o’clock.



Poncelet’s Theorem

Given an ellipse, and a smaller ellipse entirely inside it, start at a
point on the outer ellipse, and, follow a line that is tangent to the
inner ellipse until you hit the outer ellipse again.



















Maybe, though, it does close in n steps.









If so, then all such paths, starting at any point on the outer ellipse,
close up in n steps.
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This fact is Poncelet’s theorem, also known as Poncelet’s closure
theorem, and is named after Jean Poncelet.



But what does this have to do with the real world?

After all, pool tables are not elliptical...
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Tarski’s Plank Problem

Given a circular table of diameter 9 feet, which is the minimal
number of planks (each 1 foot wide and length greater than 9 feet)
needed in order to completely cover the tabletop? Nine parallel
planks suffice, but is there a covering using fewer planks if suitably
oriented?



More precisely...

Suppose (wn) are widths of a countable family of planks covering
D. Then

∞∑
n=1

wn ≥ Width(D).

If
∑∞

n=1 wn = Width(D), the diameter of the disk, then the planks
must actually be parallel.



Gelfand’s questions

Row n has the leftmost digit of 2n, 3n, . . . when written in base 10.

Questions: Will 23456789 occur a second time? 248136?
(infinitely often in column 1, but in no other column).
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Who cares about patterns of sequences in the real world?

Benford does: Frequencies of first digits in data

Discovered by Simon Newcomb in 1881.

Rediscovered by Frank
Bedford in 1938.

1 appears 30% of the time; 2 about 18% of the time, 3 about 12%
of the time, 4 about 9%, and 5 about 8%.

And who cares about frequencies? The people who collect your
taxes, for example.

Law applies to budget, income tax or population figures as well as
street addresses of people listed in the book American Men of
Science.
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Wait...isn’t this four problems?

Theorem (Steiner’s Theorem)

Let C ,D be circles, D inside C. Draw a circle, Γ0 tangent to C and
D. Then draw a circle tangent to C ,D, and Γ0. Repeat, getting
Γ0, . . . , Γn. If Γn = Γ0, then Γn = Γ0 for all initial choices of Γ0.



Three of these are looking for a measure. Which three?



Poncelet’s Theorem

If an n-sided Poncelet transverse constructed for two given conic
sections is closed for one point of origin, it is closed for any
position of the point of origin.

Specifically, given one ellipse inside another, if there exists one
circuminscribed (simultaneously inscribed in the outer and
circumscribed on the inner) n-gon, then any point on the boundary
of the outer ellipse is the vertex of some circuminscribed n-gon.



Good references, easy reading

Poncelet’s Theorem, Leopold Flatto 2009
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What’s a porism?

http://mathworld.wolfram.com/PonceletsPorism.html

The term ”porism” is an archaic type of mathematical proposition
whose historical purpose is not entirely known. It is used instead of
”theorem” by some authors for a small number of results for
historical reasons. .–J. K. Barnett, Wolfram
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Easy case: The unit disk and the circle {z : |z | = 1/2}.

Easy because we simply look for arcs of equal length.

Idea: Find a measure that assigns equal length to the arcs you get.



More precisely

Start at one point, z0, and draw a tangent. Let R(z0) = z1.

If we were just using rotations, we could solve this problem by
dividing the circle into equal arcs so

Find an appropriate measure that assigns equal weights to the arcs
associated with R: an R-invariant measure.

We’ll “solve” this problem for n = 3 and show the measure later.
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Tarski’s Plank Problem

Given a circular table of diameter 9 feet, which is the minimal
number of planks (each 1 foot wide and length greater than 9 feet)
needed in order to completely cover the tabletop? Nine parallel
planks suffice, but is there a covering using fewer planks if suitably
oriented?
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n=1 wn = Width(D), the diameter of the disk, then the planks
must actually be parallel.



Tarski’s Plank Problem

Efficiently covering the disk means putting lots of planks near the
origin (they cover the most area); but then they must also overlap.

So we need to move them, but when we do we no longer have a
good way to measure area.

unless

we can find a measure that is invariant with respect to rigid
motions...
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Efficiently covering the disk means putting lots of planks near the
origin (they cover the most area); but then they must also overlap.

So we need to move them, but when we do we no longer have a
good way to measure area.

unless

we can find a measure that is invariant with respect to rigid
motions...



Getting our motivation from Poncelet

We need an area invariant measure and we expect to integrate
against a measure.

So, subsets of zero ν-measure should be of zero area and ν should
be invariant under rigid motions;
ν should depend only on the width, so

ν(P) = α Width(P).

Remark: A plank is P ∩ D, so D is a plank.



Partial “Proof” of the Plank Conjecture.

Since D is a Plank,

Width(D) = (1/α)ν(D) = (1/α)ν(∪nPn).

So

Width(D) ≤ (1/α)
∑
n

ν(Pn) =
∑
n

Width(Pn).

Thus, no cover can use less than the total width of D.

It remains to show that only parallel covers use minimum width.

Involves showing that a radial projection is area-preserving. (Bang,
1950/1)
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Gelfand’s question

We think of the problem on R and imagine multiplying by a seed:

Since x and 10x have the same first digit, we’ll identify these:

Take log x and throw away the integer portion

So now we can think of our numbers as being identified (like
wrapping [1, 10), [10, 100), [100, 1000), . . . around a circle)

And you want to know when your digit lies in the interval
[log(d), log(d + 1))

And this is, more or less, the picture we saw in Poncelet’s theorem.
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King’s paper describes these problems as “problems in search of a
measure.”



This one is not

Theorem (Steiner’s Theorem)

Let C ,D be circles, D inside C. Draw a circle, Γ0 tangent to C and
D. Then draw a circle tangent to C ,D, and Γ0. Repeat, getting
Γ0, . . . , Γn. If Γn = Γ0, then Γn = Γ0 for all initial choices of Γ0.





Flatto, Poncelet’s Theorem, 2009

Clear when C and D are concentric circles.

Steiner’s theorem can be reduced to the case of concentric circles
using Möbius transformations.

Poncelet’s theorem cannot.
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My problem is Poncelet’s porism for n = 3 and I’m going to solve
it.

Right now.
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My toolbox

Degree n-Blaschke products

B(z) =
n∏

j=1

z − aj
1− ajz

,

a1, . . . , an ∈ D



What is the group of invariants of a Blaschke product?

B : D→ D and B : ∂D→ ∂D

Question: What is the group of continuous functions
u : ∂D→ ∂D such that

B ◦ u = B?

Note: If B(z1) = λ, then B(u(z1)) = B(z1) = λ, so u permutes
points in B−1{λ}.
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Degree-three Blaschke products

Consider

B(z) = z

(
z − a1

1− a1z

)(
z − a2

1− a2z

)
.

• B maps the unit circle in the three-to-one fashion onto itself;

Blaschke products revealed

Given λ ∈ ∂D, what can we say about the points where B = λ?

http://lexiteria.com/~ashaffer/blaschke/composetool.html


Taking the logarithmic derivative (derivative of log(B(z)):

z
B ′(z)

B(z)
= z

(
1

z
+

1

z − a1
+

a1
1− a1z

+
1

z − a2
+

a2
1− a2z

)
.

= 1 +
1− |a1|2

|1− a1z |2
+

1− |a2|2

|1− a2z |2
.

So a Blaschke product never reverses direction and the set
Eλ = {z ∈ ∂D : b(z) = λ} consists of three distinct points.

Blaschke products revealed again

http://www.mscs.dal.ca/~kft/Blaschke
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Blaschke Ellipses

Figure : b(z) = z
(

z−a1
1−a1z

)(
z−a2
1−a2z

)
.



Theorem (Daepp, G, Mortini, 2002)

Consider a Blaschke product b with zeros 0, a1, a2 ∈ D. For
λ ∈ ∂D, let z1, z2, z3 denote the distinct points mapped to λ under
b. Then the line joining z1 and z2 is tangent to

E : |w − a1|+ |w − a2| = |1− a1a2|.

Conversely, each point of E is the point of tangency with E of a
line that passes through points z1 and z2 on the circle for which
b(z1) = b(z2).

Note: These ellipses are Poncelet ellipses.

What are the Poncelet 3-ellipses?

They are precisely the ones associated with Blaschke products
(Frantz, Monthly 2005)
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This reminds me of...

Theorem (Bôcher, Grace mj > 0)

Let
F (z) =

m1

z − z1
+

m2

z − z2
+

m3

z − z3
,

where m1,m2,m3 are positive numbers, and z1, z2, z3 are distinct
complex numbers.

Then the zeros a1 and a2 of F are the foci of the ellipse that
touches the line segments z1z2, z2z3, z3z1 in the points ζ1, ζ2, ζ3
that divide these segments in ratios m1 : m2, m2 : m3 and m3 : m1,
respectively.

General mj due to M. Marden.
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Theorem (Bôcher, Grace mj > 0)

Let
F (z) =

m1

z − z1
+

m2

z − z2
+

m3

z − z3
,

where m1,m2,m3 are positive numbers, and z1, z2, z3 are distinct
complex numbers.

Then the zeros a1 and a2 of F are the foci of the ellipse that
touches the line segments z1z2, z2z3, z3z1 in the points ζ1, ζ2, ζ3
that divide these segments in ratios m1 : m2, m2 : m3 and m3 : m1,
respectively.

General mj due to M. Marden.



This reminds me of...
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What’s the connection?

Let λ ∈ ∂D with b(zj) = λ:

b(z)/z

b(z)− λ
=

m1

z − z1
+

m2

z − z2
+

m3

z − z3

mj = b(zj)/(zjb
′(zj)) = 1/(1 +

1− |a1|2

|1− a1zj |2
+

1− |a2|2

|1− a2zj |2
)

By the previous theorem: the zeros of b(z)/z are the foci of the
ellipse that touches the line segments z1z2, z2z3, z3z1 in the points
ζ1, ζ2, ζ3 that divide these segments in ratios m1 : m2, m2 : m3 and
m3 : m1, respectively.
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Poncelet’s theorem

Given an ellipse inside the unit circle, how do we enclose it in a
triangle?

We look for points that have equal “length” with respect to the
measure

h(z) = z
B ′(z)

B(z)
= 1 +

1− |a1|2

|z − a1|2
+

1− |a2|2

|z − a2|2
.

We’ve answered King’s measure problem for 3-inscribed ellipses.



Back to the group of automorphisms

So, can we also answer our question for n = 3? That is, what is
the group of continuous u : ∂D→ ∂D with B ◦ u = B for degree 3
Blaschke products?

It’s the cyclic group of order 3 and you’ve been looking at it in the
applet.
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What about degree n Blaschke products of the form

b(z) = z
n−1∏
j=1

z − aj
1− ajz

?

What about infinite Blaschke products?

i.e. Zeros (an) in D, ∑
n

(1− |an|) <∞
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Commercial Break: A definitely different problem

Theorem (Siebeck)

Suppose that the vertices of a triangle are z1, z2, and z3. Let
p(z) = (z − z1)(z − z2)(z − z3). Then the roots of p′ are the foci
of the inellipse of 4z1z2z3, tangent to the sides at the midpoints.

Theorem (Gauss-Lucas Theorem)

The zeros of the derivative of a polynomial are contained in the
convex hull of the zeros of the polynomial.

Sendov conjecture: Given a polynomial p with zeros inside the
closed unit disk, for each zero z0 of the polynomial is there a zero
of the derivative within the circle |z − z0| ≤ 1?
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The definitely different problem and its connection to
Blaschke products

Let
p′(z) = 3(z − a1)(z − a2)

and a1, a2 lie in the open unit disk; zeros of p on the unit circle.

Then
p′(z)

3p(z)
= (1/3)

3∑
j=1

1

z − zj
.

Bôcher Grace said: Let

F (z) =
m1

z − z1
+

m2

z − z2
+

m3

z − z3
,

m1,m2,m3 positive, and z1, z2, z3 are distinct complex numbers.

But how do we get to a Blaschke product?
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The connection: p′(z) = 3(z − a1)(z − a2) and a1, a2 lie in the
open unit disk; zeros of p on the unit circle.

Then
p′(z)

3p(z)
= (1/3)

3∑
j=1

1

z − zj
.

There is a Blaschke product b such that

b(z)/z

b(z)− λ
=

p′(z)

3p(z)
= (1/3)

3∑
j=1

1

z − zj
.

Zeroes of p′ are the foci of an ellipse inscribed in the triangle
∆z1 z2 z3 .
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Where are we on Sendov’s conjecture?

1 Degrees 3, 4 and 5 were solved relatively quickly; degree 6 was
solved in 1996 (J. Borcea) and later degree 7.

2 Degree 8 (J. Brown and G. Xiang, 1999)

3 All zeros real (Rahman, Schmeisser)

4 All zeros on the unit circle (Goodman, Rahman, Ratti;
Schmeisser, 1969)

5 One zero at the origin (Bojanov, Rahman, Szynal, 1985)

6 In a different direction, moving zeros just a bit (M. Miller);
recent quantitative estimates for this.

Borcea’s variance conjectures on the critical points of polynomials

Khavinson, Pereira, Putinar, Saff and Shimorin dedicated to J.
Borcea



And more recent results

In 2014, Jérôme Dégot [PAMS] proved a Sendov Conjecture for
high degree polynomials

Theorem

Let P be a polynomial with zeros in the closed unit disk and
suppose P(a) = 0, where 0 < a < 1. Then there exists a constant
N such that if the degree of P is bigger than N, then the
derivative of P has a zero in the disk of radius 1 about a.

What is N? It is defined in terms of three other constants: N1, N2

and K .



And you should know that...

N1 is the smallest integer such that

(
1 + a/2

1 + a

)q

≤

(
1−

√
1− a2/4

na

)1/(n−1)

for all n ≥ N1,

N2 is the smallest integer such that

Dn−1 ≤ a

16n
for all n ≥ N2,

where

D := max{
(

1

1 + a

)q

:

(
1 + c

1 + a

)q

(
√

1 + c2 − ac)1−q} < 1,

and K doesn’t get any better.
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“It may be surprising to see that Sendov’s conjecture is easily
proved in extremal cases, meaning when a = 0 or a = 1 and in the
generic case, 0 < a < 1, only a few partial results are known. In
the present paper, we try to fill this gap, but it remains to obtain a
definitive proof of the conjecture, that is, to demonstrate that,
with our notations, N = 8 for all a ∈ (0, 1).

We have shown that if a zero, denoted by a, of P is given, one can
compute an integer bound N, such that if degP ≥ N, then P ′ has
a zero in the disk |z − a| ≤ 1. It would be nice if N could be given
independently of |a| or, at least, to have an explicit formula for N
in terms of a.”
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Back to our problem: What happens for higher degrees?

Blaschke products revealed again

http://www.mscs.dal.ca/~kft/Blaschke


Can we generalize this?

Is there a generalization of the Bôcher-Grace?

Theorem (Siebeck, 1864)

The zeros of the function

F (z) =
n∑

j=1

mj

z − zj
,

where mj real, are the foci of the curve that touches each
line-segment zjzk in a point dividing the line segment in the ratio
mj : mk .

So...maybe. But the curve will be more complicated.
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The matrix connection

Given an n × n matrix A, the numerical range of A is

W (A) = {〈Ax , x〉 : x ∈ Cn, ‖x‖ = 1}.

What happens if A has eigenvalue λ?
Let’s let x be a unit eigenvector.

〈Ax , x〉 = 〈λx , x〉 = λ〈x , x〉 = λ.

Theorem (C. K. Li, noncomputational proof)

Given a 2× 2 matrix with eigenvalues a1 and a2, the numerical
range of A is an elliptical disk with foci a1 and a2 and minor axis√

tr(A?A)− |a1|2 − |a2|2.
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Basic facts about the numerical range of n × n matrices:

1 W (A) is convex (Toeplitz-Hausdorff theorem, 1918/1919),
compact.

2 W (A) contains the spectrum of A. (M. Stone, 1932)

3 If A is normal (A?A = AA?), the extreme points of W (A) are
the eigenvalues (1957)

4 If A is normal, W (A) is the closed convex hull of its
eigenvalues.
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Gau and Wu, 1998, 1999, 2000, 2003, 2004

Consider the matrix A, eigenvalues a1, a2 ∈ D(
a1

√
1− |a1|2

√
1− |a2|2

0 a2

)
• Then A is a contraction (‖A‖ ≤ 1);

• eigenvalues are a1, a2—the zeros of the Blaschke product we
considered

• A dilates to a unitary operator (U?U = UU? = I ) on a space K :

unitary: columns form an orthonormal basis for K and

special property of our matrix:

dim(K 	 H) = rank(1− A?A) = 1.
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Bλ =

 a1
√

1− |a1|2
√

1− |a2|2 −a2
√

1− |a1|2
0 a2

√
1− |a2|2

λ
√

1− |a1|2 −λa1
√

1− |a2|2 λa1a2


where |λ| = 1.

Bλ a unitary dilation of A: V ?BλV = A,

V =

 1 0
0 1
0 0


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The characteristic polynomials of A and Bλ

Of A: q(z) = (z − a1)(z − a2);

Of Bλ: p(z) = z(z − a1)(z − a2)− λ(1− a1z)(1− a2z).

i. e. eigenvalues are where

z(z − a1)(z − a2)

(1− a1z)(1− a2z)
= λ.

So: The eigenvalues of Bλ are the three (distinct) values b maps
to λ.

Note: Every 3× 3 unitary matrix with distinct eigenvalues is
unitarily equivalent to a Bλ.
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W (A) = {〈Ax , x〉 : x ∈ Cn, ‖x‖ = 1} in the degree-3 case

•W (A) is an elliptical disk with foci at the eigenvalues of A or the
zeros of B(z)/z .

•W (Bλ) is the convex hull of the eigenvalues of Bλ or the triangle
formed by the three distinct points identified by the Blaschke
product.

Figure : W (A) = ∩λ∈DW (Bλ).
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Where we are

1 Poncelet’s theorem for 3-gons (triangles);

2 Connected points identified by degree-3 Blaschke products;

3 Connection to a theorem of Bôcher-Grace and the Sendov
conjecture;

4 Numerical range of a 2× 2 matrix and its 3× 3 dilations.



The matrices A and Bλ

A =


a1

√
1− |a1|2

√
1− |a2|2 . . . (

∏n−1
k=2 (−ak ))

√
1− |a1|2

√
1− |an|2

0 a2 . . . (
∏n−1

k=3 (−ak ))
√

1− |a2|2
√

1− |an|2

. . . . . . . . . . . .

0 0 0 an



Bλ =

 A

∏n
k=2(−ak )

√
1− |a1|2∏n

k=3(−ak )
√

1− |a2|2

. . .

λ
√

1− |a1|2 . . . λ(
∏j−1

k=1(−ak ))
√

1− |aj |2 . . . λ
∏n

k=1(−ak )


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The class Sn

Operators T on an n-dimensional space where

‖T‖ ≤ 1, T has no eigenvalue of modulus one,

rank (1− T ?T ) = 1.

Example. 
0
1 ·
· · · · · ·

· ·
0 1 0


Jordan block size n; numerical range {z : |z | ≤ cos(π/(n + 1))}
(Haagerup, de la Harpe, 1992)
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The general n × n matrix

As before, Bλ is a unitary dilation of A (for each λ)

characteristic polynomial of A =
∏

(z − aj);
characteristic polynomial of Bλ = z

∏
(z − aj)− λ

∏
(1− ajz).

Theorem (Gau, Wu, 1998)

If T ∈ Sn, then for λ ∈ ∂D there is a unique n-gon P such that:

1 P is inscribed in ∂D;

2 P is circumscribed about W (T ) with each side tangent at
precisely one point;

3 P has λ as a vertex.

This is, again, a version of Poncelet’s theorem for n-gons.
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The group of invariants for a degree-n Blaschke product

Theorem (Cassier, Chalendar)

Let B be a finite Blaschke product. Then the group of invariants is
Zn, the cyclic group of order n.



Infinite products, with I. Chalendar and J. R. Partington

b(z) = zm
∏ |an|

an

an − z

1− anz
,
∑

(1− |an|) <∞.

b is bounded and analytic on D, maps D to D, but does not have
modulus one on the unit circle.

“|b| = 1” almost everywhere on the unit circle, though, but this is
a roadblock for our problem.

There’s also a second “type” of function that “acts like” an infinite
Blaschke product and those are called singular inner functions.
They are part of the class of inner functions.
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Other inner functions

A singular inner function is a bounded analytic function with no
zeros in the disk, maps the open unit disk to itself, and has radial
limits of modulus one almost everywhere on the unit circle.

Bounded analytic functions that have modulus one a.e. on the unit
circle are called inner functions and every inner function I is

I = BS ,

where B is Blaschke and S is singular inner.

S(z) = exp

(
−
∫

e iθ + z

e iθ − z
dµ(θ)

)
where the measure is singular with respect to Lebesgue measure.



So is there an infinite version of Poncelet’s theorem?

Yes. But...we need to think about what we can ask.

So let’s suppose there’s only one singularity; i.e. one bad point
that the zeros approach.



And here’s “proof” that it will work!

Figure : Blaschke product with one singularity
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Thank you!
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