Problem 1. Assume \(A, B, A_\alpha \subset X \). Prove the following
- If \(A \subset B \) then \(\overline{A} \subset \overline{B} \).
- \(\overline{A \cup B} = \overline{A} \cup \overline{B} \).
- \(\bigcup \overline{A_\alpha} \supset \bigcup \overline{A_\alpha} \), show that equality is not necessary true.

Problem 2. Show that every ordered topology is Hausdorff.

Problem 3. Let \(A \subset X \) and \(B \subset Y \). Show that in the space \(X \times Y \)
\(\overline{A \times B} = \overline{A} \times \overline{B} \)

Problem 4. Find a function \(f : \mathbb{R} \rightarrow \mathbb{R} \), which is continuous at precisely one point.

Problem 5. Let \(Y \) be an ordered set in the ordered topology. Let \(f, g : X \rightarrow Y \) be continuous
- Show that the set \(\{x : f(x) \leq g(x)\} \) is closed in \(X \).
- Let \(h : X \rightarrow Y \) be the function \(h(x) = \min\{f(x), g(y)\} \). Show that \(h(x) \) is continuous.

Problem 6. Let \(f : A \rightarrow B \) and \(g : C \rightarrow D \) be continuous functions. Let us define a map \(f \times g : A \times C \rightarrow B \times D \) by the equation
\(f \times g(a \times c) = f(a) \times g(c) \).
Show that \(f \times g \) is continuous.

Problem 7. Prove that if each space \(X_\alpha \) is a Hausdorff space then \(\prod X_\alpha \) is a Hausdorff space in both the box and product topologies.

Problem 8. Given sequences \((a_1, a_2, \ldots) \) and \((b_1, b_2, \ldots) \) of real numbers with \(a_i > 0 \) for all \(i \), define \(h : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega \) as
\(h((x_1, x_2, \ldots)) = (a_1 x_1 + b_1, a_2 x_2 + b_2, \ldots) \).
Show that if \(\mathbb{R}^\omega \) is is given the product topology then \(h \) is a homeomorphism of \(\mathbb{R}^\omega \) with itself. What happens if \(\mathbb{R}^\omega \) is given the box topology?