1. Using either the methods of complex variables or of real analysis prove that the following improper Riemann integral exists:

\[\int_0^\infty \frac{\sin(x)}{x} \, dx. \]

2. Define the Lebesgue outer regular measure \(m^* \) of a subset \(E \) of \((0,1)\) by

\[m^*(E) = \inf \{ m^*(U) \mid E \subset U, U \text{ open} \}. \]

Define the Lebesgue inner regular measure of \(E \) to be

\[m_*(E) = \sup \{ m^*(K) \mid K \subset E, K \text{ closed} \}. \]

Prove the following two definitions of measurability are equivalent.

Definition 1: We say \(E \) is measurable iff

\[m^*(E) + m^*(E') = 1 \]

where \(E' \) denotes the complement of \(E \) in \((0,1)\).

Definition 2: We say \(E \) is measurable iff

\[m^*(E) = m_*(E). \]

3. Let \(X \) and \(Y \) be two measure spaces.
 (a) Give the definition of a measurable function from \(X \) to \(Y \).
 (b) Let \(f \) and \(g \) be measurable functions from \(X \) to \(Y \). Prove that \(f + g \) is measurable.
 (c) Let \(f \) and \(g \) be measurable functions from \(X \) to \(Y \). Prove that \(fg \) is measurable.

4. Let \((X, \mathcal{M}, \mu)\) be a measure space and let \(\{f_n\} \) and \(\{g_n\} \) be two sequences of non-negative measurable functions on \(X \). Assume \(f_n \leq g_n \) for all \(n \) and
 (i) \(f_n \to f \) pointwise almost everywhere.
 (ii) \(g_n \to g \) pointwise almost everywhere.
 (iii) \(g \) is integrable and \(\int_X g_n \, d\mu \to \int_X g \, d\mu \).

Prove that \(f \) is integrable and \(\int_X f_n \, d\mu \to \int_X f \, d\mu \)

5. Let \(X \) be a set and let \(\mathcal{M} \) be a sigma algebra of subsets of \(X \). Suppose that \((X, \mathcal{M}, \beta)\) and \((X, \mathcal{M}, \nu)\) are two finite measure spaces. We say that \(\beta \) is absolutely continuous with respect to \(\nu \) \((\beta \ll \nu) \) if \(\beta(E) = 0 \) whenever \(\nu(E) = 0 \). Prove that \(\beta \ll \nu \) if and only if for every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(\nu(E) < \delta \) implies that \(\beta(E) < \epsilon \).
6. Given three vertices of a parallelogram \(z_1, z_2, z_3 \) in \(\mathbb{C} \), find the fourth vertex \(z_4 \), opposite to the vertex \(z_2 \), in terms of the other three vertices.

7. Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) be an entire function. Calculate each of the following integrals, in terms of the function \(f \) and its derivatives. (Here, \(C_s(b) = \{ z \in \mathbb{C} : |z - b| = s \} \).)

 - (a). \(\frac{1}{2\pi i} \int_{C_s(a)} \frac{f^2(z)}{(z - a)^2} \, dz \),

 - (b). \(\left[\frac{1}{2\pi i} \int_{C_s(a)} \frac{f(z)}{z - a} \, dz \right]^2 \),

 - (c). \(\frac{1}{2\pi i} \int_{C_s(a)} \frac{f(z)}{(z - a)^2} \, dz \)

 - (d). \(\frac{1}{2\pi i} \int_{C_s(a)} \frac{f^2(z)}{z - a} \, dz \).

8. Let \(f : D \rightarrow D \) be an analytic function, where \(D \) is the open unit disc in \(\mathbb{C} \). Suppose that \(f(1/4) = -2/3 \). Is it possible for \(f(1/3) = 2/3 \)? Explain your reasoning.

9. (a). State the Cauchy-Riemann equations and prove that if \(f \) is differentiable at a point \(b \in \mathbb{C} \), then the Cauchy-Riemann equations hold at \(b \).

 (b). Let \(f : U \rightarrow \mathbb{C} \) be an analytic function on the domain \(U \) such that \(\text{Re} f(z) = (\text{Im} f(z))^2 \) for all \(z \in U \). Prove that \(f \) is a constant function.

10. Find the domains of convergence of the given series.

 - (a). \(\sum_{n=0}^{\infty} \left(z^n + \frac{1}{2^n} z^n \right) \),

 - (b). \(\sum_{n=0}^{\infty} \frac{(-1)^n}{z + n} \).