1. Given three vertices of a parallelogram \(z_1, z_2, z_3 \) in \(\mathbb{C} \), find the fourth vertex \(z_4 \), opposite to the vertex \(z_2 \), in terms of the other three vertices.

2. Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire function. Calculate each of the following integrals, in terms of the function \(f \) and its derivatives. (Here, \(C_s(b) = \{ z \in \mathbb{C} : |z-b| = s \}. \)

 \[(a). \quad \frac{1}{2\pi i} \int_{C_r(a)} \frac{f^2(z)}{(z-a)^2} \, dz,\]
 \[(b). \quad \left[\frac{1}{2\pi i} \int_{C_r(a)} \frac{f(z)}{z-a} \, dz \right]^2,\]
 \[(c). \quad \frac{1}{2\pi i} \int_{C_r(a)} \frac{f(z)}{(z-a)^2} \, dz,\]
 \[(d). \quad \frac{1}{2\pi i} \int_{C_r(a)} \frac{f^2(z)}{z-a} \, dz.\]

3. Let \(f \) be a meromorphic function on \(\mathbb{C} \), having poles at the three points \(z = 1 + 3i, 3 - 4i, \) and \(5 \), as well as one removable singularity at \(z = 3 \). In each case below, either provide the requested quantity (with explanation) or explain why not enough information has been provided to find this quantity.

 \[(a). \limsup_{n \to \infty} (\frac{|f^{(n)}(3+i)|}{n})^{1/n}.\]
 \[(b). \lim_{z \to 5} |f(z)|.\]
 \[(c). \lim_{z \to 1+3i} (z - 1 - 3i)f(z).\]
 \[(d). \lim_{z \to \infty} |f(z)|.\]

4. Let \(f : D \to D \) be an analytic function, where \(D \) is the open unit disc in \(\mathbb{C} \). Suppose that \(f(1/4) = -2/3 \). Is it possible for \(f(1/3) = 2/3 \)? Explain your reasoning.

5. Let \(f : D \to D \) be an analytic function, where \(D \) is the open unit disc in \(\mathbb{C} \). Suppose that there is a positive number \(\delta > 0 \) such that for every \(\theta, \ |\theta| < \delta, \lim_{z \to e^{i\theta}} f(z) = 0 \). Prove that \(f \equiv 0 \) on \(D \).
6. (a). State the Cauchy-Riemann equations and prove that if \(f \) is differentiable at a point \(b \in \mathbb{C} \), then the Cauchy-Riemann equations hold at \(b \).

(b). Let \(f : U \to \mathbb{C} \) be an analytic function on the domain \(U \) such that \(\text{Re} \, f(z) = (\text{Im} \, f(z))^2 \) for all \(z \in U \). Prove that \(f \) is a constant function.

7. Find all real numbers \(b \) so that the following integral exists, and for these \(b \) evaluate this integral:

\[
\int_{-\infty}^{\infty} \frac{1}{x^2 + bx + 1} \, dx.
\]

8. Let \(P(z) = 2z^4 + 5z^2 \) and \(Q(z) = z^4 + 10z^2 + 1 \). Prove that \(P \) and \(Q \) have the same number of zeros inside the open unit disc as well as the same number of zeros outside the unit disc but inside the disc of radius 4 centered at 0.

9. Find the linear fractional transformation which transforms the points \(-1, 0, 1 \) respectively into the points \(1, i, -1 \), and explain what the upper half-plane becomes in this mapping.

10. Find the domains of convergence of the given series.

(a).
\[
\sum_{n=0}^{\infty} \left(z^n + \frac{1}{2^n z^n} \right),
\]

(b).
\[
\sum_{n=0}^{\infty} \frac{(-1)^n}{z + n}.
\]