1. Evaluate the following integrals.

 a) \[\oint_{|z|=2} z^2 e^{1/z} \, dz. \]

 b) \[\oint_{|z|=2} \frac{\cos z}{z^2(z - 1)} \, dz. \]

2. Find all possible Laurent expansions of \(f(z) = \frac{1}{z^2 - 1} \) about \(z = 1 \).

3. Let \(f \) and \(g \) be entire functions which satisfy

 (i) \(f(0) = g(0) \neq 0 \) and
 (ii) \(|f(z)| \leq |g(z)| \)

 for every complex number \(z \). Prove that \(f = g \).

4. Let \(C_1 \) be the circle with center 0 and radius 1, and let \(C_2 \) be the circle with center \(\frac{1}{2} \) and radius \(\frac{1}{2} \).

 Consider the function \(f(z) = (z - 1)^{-1} \).

 a) Determine the image under \(f \) of the region between \(C_1 \) and \(C_2 \).

 b) Determine the image under \(f \) of the region in the first quadrant between \(C_1 \) and \(C_2 \).
5. Determine all entire functions $f(z)$ which have the property that there exists a real number M such that $\text{Re}\{f(z)\} - x \leq M$ for all $z = x + iy \in \mathbb{C}$.

6. Let $|a_m| < 1$, $m = 1, 2, \ldots, n$ and

$$F(z) = \prod_{m=1}^{n} \left[\frac{z - a_m}{1 - \bar{a}_m z} \right].$$

Prove that if $|b| < 1$, the equation $F(z) = b$ has exactly n roots in the open unit disk.

7. Let f be analytic on an open set containing $\bar{\Delta} := \{z \in \mathbb{C} : |z| \leq 1\}$.
 a) Show that if $|f(z)| < 1$ for every $|z| = 1$ then there is a unique $z_0 \in \Delta$ with $f(z_0) = z_0$. (Note: $\Delta = \{z \in \mathbb{C} : |z| < 1\}$).
 b) Give an example to show that this conclusion no longer holds if we relax the condition on f to "$|f(z)| \leq 1$ for every $|z| = 1$".
 c) Show that if $|f(z)| > 1$ for every $|z| = 1$ and $f(0) = 1$ then f must have a zero in Δ.

8. Let C be the unit circle, oriented counter clockwise. For any z in the complex plane, $|z| \neq 1$, evaluate

$$\int_{C} \frac{\bar{z} d\zeta}{\zeta - z}.$$

9. Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and suppose that $f : \Delta \to \mathbb{C}$ is an analytic function which is also one-to-one. Assume that $f(0) = 0$, $f'(0) = 1$, and f is not the identity map on Δ. Prove that
 a) $f(\Delta) \not\subset \Delta$,
 b) $\Delta \not\subset f(\Delta)$.
10. Let \(g(z) = \cos(\sqrt{z}) := \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{(2k)!} \).

a) Prove that \(g(z) \) is an entire function of \(z \).

b) Find an infinite product representation of \(g(z) \).