1. (Rounding-Error Analysis) Consider the basic arithmetic operations
\(z_1 := x + y, \)
\(z_2 := x \cdot y, \) and \(z_3 := x / y \) realized in finite-precision/floating-point arithmetic (where \(x \) and \(y \) are not necessarily machine numbers).

 (a) Using simple error analysis, derive expressions (to leading order) for the relative error in each.

 (b) Show that \(|(\text{fl}(z_i) - z_i)/z_i| \leq 3 \epsilon_p \) for \(i = 2, 3. \)

 (c) The same is not true for \(z_1. \) Is the problem mathematical conditioning or numerical conditioning (also called numerical stability)? Explain.

2. (Conditioning) The ordinary dot product of two real \(n \)-vectors \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) is given by
\[
a \cdot b = a_1 b_1 + \cdots + a_n b_n.
\]
This can be viewed as a function on \(\mathbb{R}^{2n} \) to \(\mathbb{R}^n \):
\[
f(a, b) = f(a_1, \ldots, a_n, b_1, \ldots, b_n) := a_1 b_1 + \cdots + a_n b_n.
\]
Assume \(\mathbb{R}^{2n} \) is normed by the usual Euclidean norm
\[
x = (x_1, \ldots, x_{2n}) \implies \|x\|_2 := \sqrt{x_1^2 + \cdots + x_{2n}^2}
\]
and \(\mathbb{R}^n \) is normed by the usual absolute value function.

(a) Derive the following expression for the mathematical condition number of this function:
\[
\text{cond}(f; a, b) = \frac{a_1^2 + \cdots + a_n^2 + b_1^2 + \cdots + b_n^2}{|a_1 b_1 + \cdots + a_n b_n|}.
\]
(HINT: you may use the fact that for \(x, y \in \mathbb{R}^n, \)
\[
\sup_{y \neq 0} \frac{|x \cdot y|}{\|y\|_2} = \|x\|_2.
\]

(b) What situations here are well/ill-conditioned?
3. (Interpolation) Let $P_{i_0 \cdots i_k}$ denote the polynomial of degree k that interpolates to $f(x)$ at x_{i_0}, \ldots, x_{i_k}.

(a) Prove that

$$P_{i_0 \cdots i_{k+1}}(x) = \frac{(x - x_{i_0})P_{i_1 \cdots i_{k+1}}(x) + (x_{i_{k+1}} - x)P_{i_0 \cdots i_k}(x)}{(x_{i_{k+1}} - x_{i_0})}.$$

(b) What is the name of the algorithm that recursively uses this relationship to evaluate the interpolating polynomial (without explicitly forming it) at a given point x?

4. (Trigonometric Interpolation) Let $0 < x_0 < x_1 < \ldots < x_{2n} < 2\pi$ and let $\{y_k\}_{k=0}^{2n}$ be real numbers. Prove that there exists a unique trigonometric polynomial

$$T(x) = \frac{1}{2}a_0 + \sum_{j=1}^{n} (a_j \cos jx + b_j \sin jx)$$

with

$$T(x_k) = y_k \text{ for } k = 0, 1, \ldots, 2n.$$

5. (Piecewise Polynomial Interpolation) A function L_Δ is in the class L_Δ of “real piecewise-linear polynomials” (relative to a given partition $\Delta : a = x_0 < x_1 < \cdots < x_n = b$) if it satisfies

(a) $L_\Delta \in C[a, b]$,

(b) $L_\Delta|_{[x_i, x_{i+1}]} \in \Pi_1$, $i = 0, \ldots, n - 1$,

that is, L_Δ is a continuous function that coincides with a polynomial of degree at most one in each subinterval.

(a) The classical interpolation problem for L_Δ is “given (x_i, f_i), $i = 0, \ldots, n$, find $L_\Delta \in L_\Delta$ such that $L_\Delta(x_i) = f_i$, $i = 0, \ldots, n$.”

Prove that this problem has a unique solution.

(b) Supposing that the data come from a twice continuously differentiable function, i.e., $f_i = f(x_i)$, $i = 0, \ldots, n$, ($f \in C^2[a, b]$), derive the error bound

$$\|f - L_\Delta(f)\|_\infty \leq \frac{1}{8} \|f''\|_\infty \|\Delta\|^2,$$

$$\|\Delta\| := \max_{j=0,\ldots,n-1} |x_{j+1} - x_j|.$$
6. (Quadrature, Peano Kernels)

(a) Derive the Peano kernel for the error functional in the Mid-Point Rule:

\[\int_0^h f(x) \, dx \approx f(h/2) \cdot h. \]

(b) Sketch \(K(t) \).

(c) Derive from the Peano-kernel representation error formulas/bounds in terms of \(f''(\xi) \), \(\| f'' \|_\infty \), and \(\| f'' \|_1 \).

7. (Extrapolation/Romberg Integration)

(a) Granted the validity of the asymptotic expansion for the composite Trapezoid rule

\[T(h) \sim \int_a^b f(x) \, dx + \tau_1 h^2 + \tau_2 h^4 + \cdots, \]

where

\[T(h) := h \left[\frac{f(a)}{2} + f(a + h) + \cdots + f(b - h) + \frac{f(b)}{2} \right], \]

one can inductively define higher-order asymptotic expansions \(T_k(h) \) via

\[T_0(h) := T(h) \]
\[T_{k+1}(h) := T_k(h) + \frac{T_k(h) - T_k(2h)}{4^{k+1} - 1}, \quad k = 0, 1, \ldots. \]

An alternate approach is to use polynomial interpolation. As an illustration, find the polynomial of the form \(P_2(x) = c_0 + c_2 x^2 \) that interpolates to the data \((h, T(h))\) and \((2h, T(2h))\). Show that \(P_2(0) = T_1(h) \).

(b) Show also that \(T_1(h) \) is identical with the composite Simpson’s rule.

8. (Direct Solution of Linear Systems)

(a) Gauss elimination with partial pivoting produces matrices \(P \), \(L \), and \(R \), where \(P = P_{n-1} \cdots P_1 \) (with the elementary permutation matrix \(P_j \) interchanging rows \(j \) and \(r_j \)), \(L \) is unit lower triangular, and \(R \) is upper triangular. Roughly how many flops (floating-point operations) are required to compute this decomposition?

(b) Construct a detailed algorithm (in pseudo-code) that uses \(P \), \(L \), and \(R \), as given above, to solve \(Ax = b \).

(c) Roughly how many flops does this algorithm require?

9. (Numerical Linear Algebra)

(a) Let \(\| \cdot \| \) be a norm on \(\mathbb{C}^n \). Define the matrix norm \(\| \cdot \|^* \) induced by \(\| \cdot \| \).

(b) Prove that the induced matrix norm \(\| \cdot \|^* \) is consistent with the underlying vector norm \(\| \cdot \| \).

(c) Give computational formulas for the following vector and matrix norms: \(\| x \|_1 \), \(\| x \|_2 \), \(\| x \|_\infty \), \(\| A \|_1 \), \(\| A \|_F \), and \(\| A \|_\infty \).
10. (Orthogonal Triangularization/Householder Transformations) Let \(v \) be a real non-trivial \(n \)-vector. The \(n \times n \) matrix
\[
P := I - \frac{2vv^T}{v^Tv}
\]
is called a Householder transformation.

(a) If \(Px = ke_1 \), where \(e_1 = (1, 0, \ldots, 0)^T \) and \(k \) is a constant, then show that \(v \) must be in \(\text{span}\{x, e_1\} \).

(b) Determine a vector \(v \) such that \(Px = ke_1 \) for some constant \(k \). (HINT: seek \(v \) in the form \(v = x + \alpha e_1 \)).

11. (Gershgorin Circle Theorem) Let \(A = (a_{i,j}) \) be a complex \(n \times n \) matrix. Prove that all eigenvalues of \(A \) lie in
\[
\bigcup_{i=1}^{n} \left\{ z \in \mathbb{C} : |z - a_{i,i}| \leq \sum_{\substack{j=1 \atop j \neq i}}^{n} |a_{i,j}| \right\}.
\]

12. (Iterative Methods)

(a) Define what it means for a real \(n \times n \) matrix \(A \) to be strictly diagonally dominant.

(b) Describe the Jacobi iterative method to solve the linear system \(Ax = b \).

(c) Prove that if \(A \) is strictly diagonally dominant, then the Jacobi iterative method will converge for any starting vector \(x_0 \).