INSTRUCTIONS: Do any 10 of the following 12 problems.

1. (Floating-Point Arithmetic)
 (a) Give the definition of a normalized, t-digit, base-B, floating-point number (define all terms, notation, component parts).
 (b) Prove that
 \[|x - \text{rd}(x)| \leq \frac{1}{2} B^{1-t} |x| , \]
 where \(\text{rd}(\cdot) \) denotes the “natural rounding function.”

2. (Conditioning) Consider the function
 \[f(x_1, \ldots, x_n) = x_1 + \cdots + x_n \]
as a function on \(\mathbb{R}^n \) to \(\mathbb{R} \), with \(\mathbb{R}^n \) normed by the infinity norm and \(\mathbb{R} \) normed by the usual absolute value function.
 (a) Derive the following expression for the mathematical condition number of this function:
 \[\text{cond}(f; x) = \frac{n \cdot \max\{|x_1|, \ldots, |x_n|\}}{|x_1 + \cdots + x_n|} . \]
 (b) What situations here are well/ill conditioned?

3. (Chebyshev Polynomials/Interpolation)
 (a) Show that
 \[T_n(x) = \cos(n \arccos(x)), \quad x \in [-1, 1] \]
is a polynomial of degree \(n \) with extrema at
 \[x_k = \cos\left(\frac{k\pi}{n}\right), \quad k = 0, 1, \ldots, n \]
 and leading coefficient \(2^{n-1} \). (Hint: \(\cos((n+1)\theta) + \cos((n-1)\theta) = 2 \cos \theta \cos n\theta \))
 (b) Use (a) to show that if \(f \in C^{n+1}[-1, 1] \) and if \(P(x) \) is the polynomial with degree at most \(n \) that interpolates to \(f \) at \(x_k, \quad k = 0, 1, \ldots, n \), then
 \[\|f(x) - P(x)\|_\infty \leq \frac{1}{2^{n-1}(n+1)!} \|f^{(n+1)}\|_\infty . \]
4. (Generalized Interpolation)

(a) Divided differences can be viewed as linear functionals on \(\Pi_n \). For fixed, distinct \(x_0, \ldots, x_n \), define

\[
\lambda_k(f) := f[x_0, \ldots, x_k], \quad k = 0, \ldots, n,
\]
\[
\phi_0(x) := 1,
\]
\[
\phi_k(x) := (x - x_0) \cdots (x - x_{k-1}), \quad k = 1, \ldots, n.
\]

Show that \(\{\lambda_k\} \) and \(\{\phi_k\} \) are dual bases in the sense that \(\lambda_k(\phi_l) = \delta_{kl} \). It follows (given that the \(\phi_k \) span \(\Pi_n \)) that

\[
P \in \Pi_n \Rightarrow P = \sum_{k=0}^{n} \lambda_k(P)\phi_k.
\]

(b) Another basis for \(\Pi_n \) is the Lagrange basis \(\{L_i\}_{i=0}^{n} \). What is a dual basis of linear functionals associated with these?

(c) Another basis of linear functionals in \(\Pi_n \) is given by \(\mu_k(f) := f^{(k)}(x_0), \quad k = 0, \ldots, n \). What is the polynomial basis that is dual to these?

(d) Let \(\{\Lambda_k\}_{k=0}^{n} \) be \(n + 1 \) linear functionals on \(\Pi_n \). When does the generalized interpolation problem of finding \(P \in \Pi_n \) such that

\[
\Lambda_k(P) = f_k, \quad k = 0, \ldots, n
\]

have a unique solution for any given data \(f_0, \ldots, f_n \)?

5. (Quadrature) A quadrature formula

\[
I_n(f) = \sum_{j=0}^{n} \omega_{n,j}f(x_j) \approx \int_a^b f(x) \, dx
\]

is called interpolatory if

\[
\omega_{n,j} = \int_a^b \prod_{\substack{i=0 \atop i \neq j}}^{n} \frac{(x - x_i)}{(x_j - x_i)} \, dx.
\]

The precision of a quadrature method is the greatest integer \(n \) such that

\[
I_n(P) - \int_a^b P(x) \, dx = 0
\]

for all polynomials of degree \(n \). Show that a quadrature method with precision at least \(n \) is interpolatory.
6. (Quadrature/Peano Kernels)

(a) State (DO NOT PROVE) the “Peano Kernel Theorem.”

(b) Consider the composite Trapezoid quadrature rule:

\[
\int_a^b f(x) \, dx \approx h \left[\frac{1}{2} f(x_0) + f(x_1) + \cdots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right],
\]

\[x_i = a + ih, \quad i = 0, \ldots, n, \quad h := (b - a)/n.\]

i. What is the largest polynomial space \(\Pi_k \) for which this quadrature rule is exact?

ii. The associated error functional is

\[R(f) := \int_a^b f(x) \, dx - h \left[\frac{1}{2} f(x_0) + f(x_1) + \cdots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right].\]

Prove that this is a bounded linear functional on \(C^l[a,b] \) for \(l = 0, 1, 2, \ldots \).

iii. Without explicitly constructing the kernels, indicate what types of Peano kernel representation formulas are possible for \(R \) (depending on the smoothness of \(f \)).

7. (Orthogonal Polynomials/Gauss Quadrature)

(a) Give the inner products with respect to which the following polynomials are orthogonal: Chebyshev, Hermite, Laguerre, and Legendre.

(b) Let \(x_1, \ldots, x_n \) be the roots of the \(n \)-th orthogonal polynomial with respect to the weighted inner product

\[(f,g)_w := \int_a^b f(x)g(x)w(x) \, dx.\]

Let \(h_1, \ldots, h_n \) be the weights in the quadrature rule

\[\int_a^b f(x)w(x) \, dx \approx \sum_{k=1}^n h_k f(x_k)\]

constructed to be exact on \(\Pi_{n-1} \). Prove that this rule is actually exact on \(\Pi_{2n-1} \).

8. (Full-Pivoting Back Solver) Gauss Elimination with full pivoting applied to a given matrix \(A \) produces matrices \(L \) (unit lower triangular) and \(R \) (upper triangular) and index vectors \(r = (r_1, \ldots, r_{n-1}) \) and \(s = (s_1, \ldots, s_{n-1}) \), such that

\[PAQ = LR.\]

Here \(P = P_{n-1} \cdots P_1 \) (where \(P_j \) is an elementary permutation matrix that permutes rows \(j \) and \(r_j \)), and \(Q = Q_1 \cdots Q_{n-1} \) (where \(Q_j \) permutes columns \(j \) and \(s_j \)).

Given the information in this factorization, develop a complete pseudo-code description of an algorithm to use this to solve \(Ax = b \).
9. (Matrix Condition Number) Let A be a nonsingular $n \times n$ matrix.

(a) Define the matrix condition number, $\kappa(A)$.

(b) Prove that

$$\kappa(A) = \|A\| \cdot \max_{\|y\|=1} \|A^{-1}y\|.$$

(c) Assume A is an upper triangular matrix. Describe how (b) can be used to obtain a “good” lower bound for $\kappa_{\infty}(A)$ (where $\kappa_{\infty}(A)$ is the condition number of A with respect to $\| \cdot \|_{\infty}$).

10. (Singular Values, Matrix Norms) Let A be an $m \times n$ real matrix, and let $Q \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ be orthogonal.

(a) Show that $\|QAZ\|_F = \|A\|_F$ and $\|QAZ\|_2 = \|A\|_2$.

(b) Show that $\|A\|_F^2$ equals the sum of the squares of the singular values of A and that $\|A\|_2$ equals the maximum singular value of A.

(c) Determine all singular values of Z.

11. (Orthogonal Triangularization/Householder Transformations)

(a) The Householder transformation associated with the nontrivial vector u can be written

$$P = I - \beta uu^H, \quad \beta := \frac{2}{u^Hu}.$$

i. Prove that P is Hermitian.

ii. Prove that P is unitary.

(b) Given a unitary matrix $P \in \mathbb{C}^{m \times m}$ that “triangularizes” the matrix $A \in \mathbb{C}^{m \times n}$, indicate (briefly) how it can be used to solve the Linear Least Squares problem.

12. (Eigenproblems)

(a) Given a good approximation to an eigenvalue of a matrix A, how would you compute an approximate eigenvector associated with it? Describe briefly.

(b) Given an approximation to an eigenvector of A, how would you compute an approximate eigenvalue associated with it?

(c) Briefly describe the standard method to compute all the eigenvalues of a Hermitian, tri-diagonal matrix.

(d) Discuss the mathematical conditioning of the eigenvalues for normal, non-defective, and defective matrices.