INSTRUCTIONS: Do any 8 of the following 10 problems.

1. (Conditioning) Suppose that you need to code up a function subprogram to evaluate (with high relative accuracy) the function

\[f(x) := \frac{x}{e^{-x} - 1}, \]

for any real \(x \).

(a) What is the mathematical condition number of this function? For what ranges of \(x \) is this evaluation well conditioned, ill conditioned (with respect to relative error)?

(b) Give a mathematically equivalent formula that is better suited for numerical computation when \(x \) is close to 0. Explain why.

2. (Polynomial Interpolation)

(a) Given \(n + 1 \) distinct nodes \(x_0, x_1, \ldots, x_n \) in a real interval \([-1, 1]\) and associated real numbers \(f_0, f_1, \ldots, f_n \), show that there is a polynomial \(p_n \) of degree at most \(n \), such that

\[p_n(x_i) = f_i, \quad i = 0, 1, \ldots, n. \]

(b) Show that the polynomial \(p_n \) of part (a) is unique.

(c) Suppose that the numbers \(f_i \) of part (a) are defined by \(f_i = f(x_i), i = 0, 1, \ldots, n \), where \(f \) is a real-valued function that is differentiable arbitrarily many times on \([a, b]\). Moreover, let there be a constant \(M \), such that

\[\max_{a \leq x \leq b} \left| \frac{d^j}{dx^j} f(x) \right| \leq M \]

for all \(j \geq 0 \). Prove or find a counter example to the statement: The polynomials \(p_n(x) \) converges uniformly to \(f(x) \) on \([a, b]\) as \(n \to \infty \) for any distribution of distinct nodes \(x_i \) in \([-1, 1]\).
3. (Chebyshev Equi-Oscillation Theorem) Determine the best uniform linear approximation ($P_1 \in \Pi_1$) to the function $f(x) = e^x$ on $[0,1]$.

4. (Composite Rules)
 (a) Given the basic Trapezoid Rule with error formula
 \[
 \int_a^b f(x) \, dx = \frac{(b-a)}{2} [f(a) + f(b)] - \frac{(b-a)^3}{12} f''(\xi),
 \]
 derive the associated composite Trapezoid Rule with respect to a not-necessarily-uniform partition
 \[
 a = x_0 < x_1 < \cdots < x_n = b, \quad h_{i+1} := x_{i+1} - x_i.
 \]
 (b) Assuming $f \in C^2[a,b]$, derive the following bound on the error:
 \[
 \left| \int_a^b f(x) - T_\Delta(f) \right| \leq \frac{1}{12} h^2 \|f''\|_\infty (b-a), \quad h := \max_{i=1,\ldots,n} h_i,
 \]
 where $T_\Delta(f)$ denotes the composite rule.

5. (Orthogonal Polynomials) Let $d\omega(x)$ be a positive measure on $[a,b]$, and define the inner product
 \[
 (f, g) = \int_a^b f(x)g(x)d\omega(x).
 \]
 (a) Show that the family of monic orthogonal polynomials with respect to the inner product (\cdot, \cdot) satisfy a three term recurrence relation.
 (b) Show that all zeros of any one of the orthogonal polynomials are simple and lie in the interval $[a,b]$.

6. (Generalized Eigenvalue Problems) Consider the generalized symmetric definite eigenvalue problem $Ax = \lambda Bx$, where A and B are real, square, symmetric matrices, and B is positive definite.
 (a) Show that the eigenvalues are real.
 (b) Show that the eigenvectors corresponding to distinct eigenvalues are “B-orthogonal” (i.e., $x_i^TBx_i = 0$).
(c) Construct a transformation that allows you to determine the generalized eigenvalues (and eigenvectors) by solving a regular symmetric eigenproblem.

7. (Matrix Representation) Show that any $m \times m$ matrix A admits the representation

$$A = U R U^H,$$

where $U \in \mathbb{C}^{m \times m}$ is a unitary matrix, $R \in \mathbb{C}^{m \times m}$ is upper triangular, and the superscript H denotes transposition and complex conjugation.

8. (Singular Value Decomposition) Let the matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$ be given, and assume that $m \geq n$. Consider the least-squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2.$$

Define the singular value decomposition of A, and discuss how it can be used to solve this least squares problem. Do not assume that A is of full column rank.

9. (Rayleigh Quotient) Let $A \in \mathbb{R}^{n \times n}$ be symmetric. The Rayleigh Quotient associated with A is the function

$$r(x) := \frac{x^T Ax}{x^T x}, \quad x \in \mathbb{R}^n.$$

Note that if (λ, x) is an eigenpair of A, then it follows that $r(x) = \lambda$.

(a) Show that the Rayleigh Quotient is stationary on the eigenvectors of A, that is, if x is an eigenvector of A, then $\nabla r(x) = 0$ (where ∇ denotes the gradient).

(b) Use this result to show that if y is an approximation to the eigenvector x, with associated eigenvalue λ, then

$$|\lambda - r(y)| = O\left(\|x - y\|_2^2\right).$$

10. (Nonlinear Equation) Let $f \in C^\infty$ have a zero at x_\ast.

(a) Show that when the initial approximate solution x_0 is sufficiently close to x_\ast and x_\ast is a simple zero, then the iterates x_k determined by Newton’s method converge to x_\ast at least quadratically.

(b) What is the rate of convergence of Newton’s method when x_\ast is a zero of multiplicity 2?