Qualifying Exam in Topology January 1999

Do each problem of a separate sheet. Put your name on each sheet. If a problem requires a proof, do not assume a result that makes the problem trivial. If in doubt, ask.

1. Let \(X \) be a regular space with disjoint subsets \(A \) and \(B \) with \(A \) closed and \(B \) compact. Prove there are disjoint open sets \(U \) and \(V \), one containing \(A \) and the other containing \(B \).

2. Let \(X \) be an infinite set with the finite complement topology. For a subset \(A \) of \(X \) let \(\partial A \) be the boundary of \(A \). (boundary is called 'frontier' in some books.) Prove:
 (a) If \(A \) is finite then \(\partial A = A \)
 (b) If \(X - A \) is finite then \(\partial A = X - A \)
 (c) If neither \(A \) nor \(X - A \) is finite then \(\partial A = X \)

3. Suppose \(f : X \rightarrow Y \). One definition of continuity for \(f \) is: \(f \) is continuous if and only if whenever \(x \) is a limit point of a set \(A \) in \(X \) then \(f(x) \) is in the closure of \(f(A) \). Give another definition of continuity and prove it is equivalent to the definition above.

4. Let \(B_1, B_2, B_3, \ldots \) be a sequence of closed connected sets in a compact Hausdorff space \(X \) with \(B_n \supset B_{n+1} \) for all \(n \).
 (a) Prove \(\bigcap_{n=1}^{\infty} B_n \) is connected.
 (b) Give an example that shows that the intersection may not be connected if \(X \) is not compact.

5. Let \(\mathbb{R} \) be the real line with the usual topology, let \(Q \) be the subspace of rationals and let \(Z \) be the subspace of integers. Prove or disprove: The subspaces \(Q \) and \(Z \) are homeomorphic.

6. Prove or disprove: The product of any two connected spaces is connected.

There are more problems on the other side
7. Suppose \(X \) and \(Y \) are topological spaces and \(f : X \to Y \). Suppose also \(\mathcal{F} \) is a locally finite family of closed sets in \(X \) such that \(\bigcup \mathcal{F} = X \) and \(f|_A \) is continuous for every \(A \in \mathcal{F} \).

(a) Prove \(f \) is continuous.

(b) Give an example that shows if the family is not locally finite then the function \(f \) may not be continuous.

8. Suppose \(X \) is a first-countable space and \(E \subset X \). Show that a point \(x \) is in the closure of \(E \) if and only if there is a sequence in \(E \) that converges to \(x \).

9. Prove: In any product space, a product of closed sets is closed.

10. Prove: If \(X \) is compact, \(Y \) is Hausdorff, and \(f \) is a continuous one-to-one function from \(X \) onto \(Y \) then \(f \) is a homeomorphism.