Lecture 6

Infinitesimal generator of a diffusion

Let’s look at
\[dX(t) = \mu(t, X(t))dt + \sigma(t, X(t))dW(t) \]

Definition

The infinitesimal generator of \(X \) is the 2\(^{nd} \) order differential operator \(A = A_t \) defined by:

\[
(A_t F)(x) = (AF)(t, x) = \mu(t, x) \cdot \nabla F(x) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\sigma \sigma^*)_{i,j}(t, x) \frac{\partial^2 F}{\partial x_i \partial x_j}(x)
\]

Question: What does this \(A \) have to do with \(X \)?

Connection to PDEs

We showed last time that

\[
(1) \quad F(t, X(t)) = F(0, X(0)) + \int_0^t \frac{\partial F}{\partial s}(s, X(s))ds + \int_0^t (AF)(s, X(s))ds + \text{Mart}(t)
\]

Now assume that \(F \) solves the following problem:

\[
(2) \quad \begin{cases}
F(T, x) = \phi(x) & \forall x \in \mathbb{R}^n \\
\frac{\partial F}{\partial t}(t, x) + A F(t, x) = 0 & \forall t \leq T, \forall x \in \mathbb{R}^n
\end{cases}
\]

Observe that this equation does not have anything random. It is the heat equation backwards in time, start at time \(T \), go back in time.

So we proved the following theorem:

Theorem:

If a solution \(F \) to equation(2)

\[
\begin{cases}
F(T, x) = \phi(x) & \forall x \in \mathbb{R}^n \\
\frac{\partial F}{\partial t}(t, x) + A F(t, x) = 0 & \forall t \leq T, \forall x \in \mathbb{R}^n
\end{cases}
\]

exists and is sufficiently smooth, then

\[F(t, x) = E_{t,x}[\phi(X(T))] \]

Where \(X \) is the diffusion with generator \(A \), started at \(X(t) = x \), i.e. \(X \) satisfies (1) on the interval \([t, T]\).
Remark:
This also constitutes a proof for uniqueness of solution of such problems.

Feynman-Kac formula

For solving the linear multiplicative parabolic PDE:

Assume F is the solution of the following boundary problem:

$$
\begin{align*}
F(T, x) &= \phi(x) \quad \forall x \in \mathbb{R} \\
\frac{\partial F}{\partial t}(t, x) + AF(t, x) + F(t, x)V(t, x) &= 0 \quad \forall t \leq T, \forall x \in \mathbb{R}
\end{align*}
$$

Then: $F(t, x) = E_{t,x}[\phi(X(T))e^{\int_t^T V(s,X(s))ds}]$

Ex 1:

Find the solution for:

$$
\begin{align*}
F(T, x) &= \phi(x) \\
\frac{\partial F}{\partial t}(t, x) + AF(t, x) - rF(t, x) &= 0
\end{align*}
$$

Ex 2: 5.9