Lecture 3

We saw, an arbitrage opportunity is some strategy H such that
(a) $V_0 = 0$
(b) $V_1 \geq 0$
(c) $EV_1 > 0$

OR

(a) $G^* \geq 0$
(b) $EG^* > 0$
(c) $V_0^* = 0$

It is said that the law of one price holds for a securities market model if there do not exist two trading strategies, say \hat{H} and \tilde{H}, such that $\tilde{V}_1(\omega) = \hat{V}_1(\omega)$ for all $\omega \in \Omega$, but $\hat{V}_0 > \tilde{V}_0$.

A trading strategy \hat{H} is said to be dominant if there exists another trading strategy, say \tilde{H}, such that $\tilde{V}_0 = \hat{V}_0$ and $\tilde{V}_1(\omega) > \hat{V}_1(\omega)$ for all $\omega \in \Omega$. **Proposition** There exists a dominant trading strategy iff there is a strategy $V_0 = 0$ and $V_1(\omega) > 0$ for all $\omega \in \Omega$. And if there is a dominant trading strategy, then there exists a trading strategy that can transform a strictly negative initial wealth into a non-negative wealth.

Now, lets see why:

Proposition If there are no dominant trading strategies, then the law of one price holds. The converse is not true.

The pricing of claims will be logically consistent if there is a linear pricing measure, i.e. a non-negative vector $\pi = (\pi(\omega_1), ..., \pi(\omega_n))$ such that for every trading strategy H you have

$$V_0^* = \sum_\omega \pi(\omega)V_1^*(\omega) = \sum_\omega \pi(\omega) \frac{V_1(\omega)}{B_1(\omega)}$$

Each claim has a unique price, and a claim that pays more than another in every state will have a higher time $t = 0$ price.

Proposition

The vector π is a linear pricing measure if and only if it is a probability measure on Ω satisfying

$$S_n^*(0) = \sum_\omega \pi(\omega)S_n^*(1)(\omega) \quad n = 1, 2, ..., N$$

(This means that the expectation under π of the final discounted price equals the initial price of each security.)

Proposition

There exists a linear pricing measure if and only if there is no dominant strategy.

Risk neutral probabilities
We saw that a linear pricing measure was a probability with a certain property. Its existence implied no dominant trading strategies but arbitrage could still exist. In order for the arbitrage to be ruled out we need to add on extra condition: the linear pricing measure needs to give strictly positive mass to every state $\omega \in \Omega$.

Definition

A probability Q on Ω is said to be a risk neutral probability measure if

(a) $Q(\omega) > 0$ for all $\omega \in \Omega$.
(b) $E_Q(\Delta S^*_n) = 0$, $n = 1, 2, ..., N$

where E_Q-means expectation under probability Q. ($E_Q(\Delta S^*_n) := \sum_{\omega} S^*_n(\omega)Q(\omega)$)

Remark

$E_Q(\Delta S^*_n) = E_Q[S^*_n(1) - S^*_n(0)] = E_Q[S^*_n(1)] - E_Q[S^*_n(0)] = E_Q[S^*_n(1)] - S^*_n(0)$

Hence for the risk neutral probability we have $E_Q(S^*_n(1)) = S^*_n(0)$

FIRST FUNDAMENTAL THEOREM OF FINANCE

There are no arbitrage opportunities if and only if there exists a risk neutral probability measure Q.

Valueation of a contingent claim

Definition A contingent claim X is said to be attainable (or marketable, or replicable, or reachable) if there exists some trading strategy H, called the replicating portfolio (hedging portfolio) such that $V_1 = X$. We say that H generates X.

Remark

Denote by p the price of X at time $t = 0$

If $p > V_0$, then one could make a riskless investment, making $p - V_0$. How?

If $p < V_0$, he’ll make $V_0 - p$ risk free.

If $p = V_0$, then we can not use H to create a profit? Does this mean that V_0 is the correct value of X? Not necessary if the law of one price does not hold.

Proposition If Q is any risk-neutral probability measure, then for every trading strategy H one has:

$$V_0 = E_Q[V_1/B_1] = E_Q[V^*_1]$$

Remark

1) You can not have two trading strategies H, \hat{H}, such that $V_1 = \hat{V}_1$ but $V_0 = \hat{V}_0$ if there is a risk-neutral probability.
2) The equality $V_0 = E_Q[V^*_T]$ does not depend on the choice of Q. So if there are many risk-neutral probabilities, the quantity $E_Q[V^*_T]$ is constant.

Valuation concept

If the law of one price holds, then the time $t = 0$ value of an attainable contingent claim X is $V_0 = H_0B_0 + \sum_{n=1}^N H_nS_n(0)$ where H is the trading strategy that generates X.

Risk-neutral valuation principle

If the single period model is free of arbitrage opportunities, then the time $t = 0$ value of an attainable contingent claim X is $E_Q[X/B_1]$ where Q is any risk-neutral probability measure.