Lecture 5

Multiperiod security markets

Many practitioners are using multiperiod models (rather than continuous models).

Settings:
1) There are $T + 1$ trading dates $t = 0, 1, ..., T$
2) There are a finite number (k) of states of the world. $\Omega = \{\omega_1, \omega_2, ..., \omega_k\}$
3) There is a probability measure P on Ω, with $P(\omega) > 0$ for all $\omega \in \Omega$. $P(\omega_i)$ represents the probability that the state i occurs.
4) A filtration $(\mathcal{F}_t)_{t=0,1,...,T}$ that contains all the relevant information up to time t about the security prices.
5) A bank account process $B = \{B_t; t = 0, 1, ..., T\}$ where B is a stochastic process (discrete) with $B_0 = 1$ and $B_t(\omega) > 0$ for all t and ω. B_t is the time t value of a 1 deposited at time $t = 0$. Usually B is a non-decreasing process, and the (possibly random) quantity $r_t = (B_t - B_{t-1})/B_{t-1} \geq 0$ $t = 1, ..., T$, should be thought of as interest rate pertaining to the time interval $(t-1, t)$.
6) N risky securities processes $S_n = \{S_n(t); t = 0, 1, ..., T\} n = 1, 2, ..., N$ with S_n being a nonnegative stochastic process for each $n = 1, 2, ..., N$. Here $S_n(t)$ is the stock price at time t of the risky security.

Differences from the one period model

— We have $T + 1$ trading dates.
— We have a filtration.
— We deal with discrete stochastic processes (rather than just random variables.)
— Keep in mind, we have k possible states of the world at time T. The way we get there is dictated by the filtration \mathcal{F}.

Value Process and Gains Process

A trading strategy $H = (H_0, H_1, ..., H_N)$ is a vector of stochastic processes $H_n = \{H_n(t); t = 1, 2, ..., T\}, n = 0, 1, ..., N$. Here $H_n(t)$ is the number of shares (units) that the investor owns from time $t - 1$ to time t. $H_0(t)B_{t-1}$ equals the amount of money invested in the bank at time $t - 1$. Remark that $H_n(t)$ can be negative.

Definition
The value process \(V = \{ V_t; t = 0, 1, \ldots, T \} \) is a stochastic process defined by:

\[
V_t = \begin{cases}
H_0(1)B_0 + \sum_{n=1}^{N} H_n(1)S_n(0), & t = 0 \\
H_0(t)B_t + \sum_{n=1}^{N} H_n(t)S_n(t), & t \geq 1
\end{cases}
\]

\(V_0 \) — is the time \(t = 0 \) value of the portfolio.
\(V_t \) — is the time \(t \) value of the portfolio before any transaction is made at time \(t \).

Notation

\(\Delta S_n(t) = S_n(t) - S_n(t - 1) \) — the change in value of the stock price between times \(t - 1 \) and \(t \). Then \(H_n(t)\Delta S_n(t) \) is the one-period gain or loss between \(t - 1 \) and \(t \) for the security \(n \).

Definition

\[
G_t = \sum_{s=1}^{t} H_0(s)\Delta B_s + \sum_{n=1}^{N} \sum_{s=1}^{t} H_n(s)\Delta S_n(s), t \geq 1
\]

defines the gains process — represents the cumulation gain or loss up to time \(t \) of the portfolio.

Remark

This looks like a stochastic integral. It is the stochastic integral of the trading strategy with respect to the price process.

Remark

The time \(t \) value of the portfolio, just after any time \(t \) transaction is made is:

\[
H_0(t + 1)B_t + \sum_{n=1}^{N} H_n(t + 1)S_n(t), \quad t \geq 1
\]

In general \(V_t \) and this could be different due to inflows or outflows (transaction costs, consumption) of money from the portfolio.

Definition

A trading strategy is said to be self-financing if

\[
V_t = H_0(t + 1)B_t + \sum_{n=1}^{N} H_n(t + 1)S_n(t), \quad t = 1, 2, \ldots, T - 1
\]

(Any change in the value of the portfolio is due to gains or loss in the investment but not because of addition or withdrawal of money.)

Discounted prices

Most of the time we are not interested in absolute value of the securities but rather discounted ones.
Definition

The discounted price process

\[S_n^*(t) = \frac{S_n(t)}{B_t}, \quad t = 0, 1, ..., T \quad n = 1, 2, ..., N \]

discounted value process

\[V^* = \{V^*_t\}, \quad V^*_t = \frac{V_t}{B_t}, \quad t = 0, ..., T \]

\[V^*_t = \begin{cases} H_0(1) + \sum_{n=1}^{N} H_n(1)S_n^*(0), & t = 0 \\ H_0(t) + \sum_{n=1}^{N} H_n(t)S_n^*(t), & t = 1, T \end{cases} \]

discounted gains process

\[G^* = \sum_{n=1}^{N} \sum_{u=1}^{t} H_n(u) \Delta S_n^*(u), \quad t = 1, T, \quad V^*_t = V_0^* + G_t^* . \]

Arbitrage in multiperiod models

In multiperiod models arbitrage is defined similarly.

Definition

1) An arbitrage opportunity is some trading strategy \(H \) such that:

(a) \(V_0 = 0 \)
(b) \(V_T \geq 0 \)
(c) \(EV_T > 0 \)
(d) \(H \) is self-financing

2) A self financing strategy \(H \) is an arbitrage opportunity iff:

(a) \(V_0^* = 0 \) or (a) \(G_T^* \geq 0 \)
(b) \(V_T^* \geq 0 \) or (b) \(EG_T^* > 0 \)
(c) \(EV_T^* > 0 \) or (c) \(V_0^* = 0 \)

But the risk neutral measure the definition is a bit different:

Definition

A risk neutral measure (martingale measure) is a probability measure \(Q \) such that:
1) \(Q(\omega) > 0 \) for all \(\omega \in \Omega \)

2) \(S_n^* \) is a martingale under \(Q \) for every \(n = 1, 2, ..., N \)

\[
E_Q[S_n^*(t + s)|\mathcal{F}_t] = S_n^*(t), \quad t, s \geq 0
\]

or

\[
E_Q[S_n^*(t + s) - S_n^*(t)|\mathcal{F}_t] = 0
\]

or

\[
E_Q[S_n(t + s)/B(t + s)|\mathcal{F}_t] = S_n(t)/B(t)
\]

\[
\implies E_Q[B_t S_n(t + s)/B(t + s)|\mathcal{F}_t].
\]

First fundamental theorem of finance:

There are no arbitrage opportunities if and only if there exists a martingale measure \(Q \).

Proposition

If the multiperiod model does not have any arbitrage opportunity, then none of the underlying single period models has any arbitrage opportunities in the single period sense.

Example

Consider a 2-period problem with \(\Omega = \{\omega_1, \omega_2, ..., \omega_5\} \) and one risky security:

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>(S_0(\omega))</th>
<th>(S_1(\omega))</th>
<th>(S_2(\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_1)</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>(\omega_3)</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>(\omega_4)</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>(\omega_5)</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Find: \(V_t, V_t^*, G_t^*, G_t \) for all strategies \((H_0, H_1) \) and check for the existance of martingale measures or linear pricing measure. Find all of them. Keep in mind \(B_t = (10/9)^t \).

Is the strategy: \(H_0(1)(\omega) = 2 \) for all \(\omega \)'s a self financing startegy?

\[
H_1(1)(\omega) = 3 \quad \text{for all} \quad \omega
\]

\[
H_0(2)(\omega) = \begin{cases}
1, & \text{for} \quad \omega = \omega_1, \omega_2, \omega_3 \\
2, & \text{for} \quad \omega = \omega_4, \omega_5
\end{cases}
\]

\[
H_1(2)(\omega) = \begin{cases}
29/9, & \text{for} \quad \omega = \omega_1, \omega_2, \omega_3 \\
4, & \text{for} \quad \omega = \omega_4, \omega_5
\end{cases}
\]