1. Work as many problems as you can. It is to your advantage to demonstrate a broad background.

2. If you feel there is a misprint or error in the statement of the problem, then interpret it in such a way that the problem is not trivial.
Group Theory

1. (a) Find the centralizer in S_5 of $\sigma = (1 \ 2)(3 \ 4 \ 5)$.
 (b) How many elements of order 6 are there in S_5?

2. Let G be a group and let $Z(G)$ be the center of G. Prove or disprove the following.
 (a) If $G/Z(G)$ is cyclic, then G is abelian.
 (b) If $G/Z(G)$ is abelian, then G is abelian.
 (c) If G is of order p^2, where p is a prime, then G is abelian.

3. Let G be a group. Show that if G has a proper subgroup of finite index, then G has a proper normal subgroup of finite index.

4. Let $\text{Inn}(G)$ be the group of inner automorphisms of the group G and let $\text{Aut}(G)$ be the full automorphism group.
 (a) Show that $\text{Inn}(G) \leq \text{Aut}(G)$.
 (b) Show that if $Z(G)$ is the center of G, then $\text{Inn}(G) \cong G/Z(G)$.

5. Let H be a subgroup of G and suppose there is a normal subgroup N of G satisfying $HN = G$ and $H \cap N = \langle 1 \rangle$. Prove that if two elements of H are conjugate in G, then they are conjugate in H.

6. Show that a group of order $1960 = 2^3 \cdot 5 \cdot 7^2$ cannot be simple.
Ring Theory

1. (a) Show that \(x^4 + x^3 + x^2 + x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \).

 (b) Show that \(x^4 + 1 \) is not irreducible in \(\mathbb{Z}_3[x] \).

2. Let \(R \) be the ring of all \(2 \times 2 \) matrices of the form \[
\begin{pmatrix}
a & b \\
2b & a
\end{pmatrix},
\] where \(a, b \in \mathbb{Z} \). Prove that \(R \) is isomorphic to \(\mathbb{Z}[\sqrt{2}] \).

3. Let \(D \) be a principal ideal domain. Prove that every nonzero prime ideal of \(D \) is a maximal ideal.

4. Let \(S \) be the ring of all bounded, continuous functions \(f : \mathbb{R} \to \mathbb{R} \), where \(\mathbb{R} \) is the set of real numbers. Let \(I \) be the set of functions \(f \) in \(S \) such that \(f(t) \to 0 \) as \(|t| \to \infty \).

 (a) Show that \(I \) is an ideal of \(S \).

 (b) Suppose \(x \in S \) is such that there is an \(i \in I \) with \(ix = x \). Show that \(x(t) = 0 \) for all sufficiently large \(|t| \).

5. Let \(R \) be a commutative ring with identity such that not every ideal is a principal ideal.

 (a) Show that there is an ideal \(I \) maximal with respect to the property that \(I \) is not a principal ideal.

 (b) If \(I \) is the ideal of part (a), show that \(R/I \) is a principal ideal ring.

6. Let \(R \) be a subring of a field \(F \) such that for each \(x \) in \(F \) either \(x \in R \) or \(x^{-1} \in R \). Prove that if \(I \) and \(J \) are two ideals of \(R \), then either \(I \subseteq J \) or \(J \subseteq I \).
Field Theory

1. Let F be a field extension of the rational numbers.
 (a) Show that \{ $a + b\sqrt{2} \mid a, b \in F$ \} is a field.
 (b) Give necessary and sufficient conditions for \{ $a + b\sqrt{2} \mid a, b \in F$ \} to be a field.

2. (a) Find the Galois group of $x^3 - 5$ over \mathbb{Q} and demonstrate the Galois correspondence
 between the subgroups of the Galois group and the subfields of the splitting field.
 (b) Find all automorphisms of $\mathbb{Q}(\sqrt[3]{5})$. Is there an $f \in \mathbb{Q}[x]$ with splitting field $\mathbb{Q}(\sqrt[3]{5})$?
 Explain.

3. Let α be a complex primitive 43^{rd} root of 1. Prove that there is an extension field F
 of the rational numbers such that $[F(\alpha) : F] = 14$.

4. Let p be a prime. Show that the field of p^m elements is contained in the field of p^n
 elements if and only if $m|n$.

5. Let $K = F(u)$ be a separable extension of F with $u^m \in F$ for some positive integer m.
 Show that if the characteristic of F is p and $m = p^t r$, then $u^r \in F$.

6. Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial of degree 4 with
 distinct roots $\alpha_1, \alpha_2, \alpha_3,$ and α_4. Let K be a splitting field for f over F and assume
 $Gal(K/F) \cong S_4$. Find $Gal(K/F(\beta))$, where $\beta = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$.

Linear Algebra

1. Let V be a finite dimensional vector space over a field F and let $T : V \rightarrow V$ be a
 nilpotent linear transformation. Show that the trace of T is 0.

2. (a) Show that two 3×3 complex matrices are similar if and only if they have the same
 characteristic and minimal polynomials.
(b) Is the conclusion of part (a) true for larger matrices? Prove or give a counterexample.