QUALIFYING EXAM IN ALGEBRA
August 1998

1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories.

 I. Linear Algebra — 1 problem
 II. Group Theory — 3 problems
 III. Ring Theory — 2 problems
 IV. Field Theory — 3 problems
 Any of the four areas — 1 problem

2. Turn in only 10 problems. No credit will be given for extra problems. All problems are weighted equally.

3. Put each problem on a separate sheet of paper, and write only on one side. Put your name on each page.

4. If you feel there is a misprint or error in the statement of a problem, then interpret it in such a way that the problem is not trivial.
I. Linear Algebra

1. Let \(A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \).

Find the characteristic and minimal polynomials of \(A \) and determine the Jordan canonical form of \(A \).

2. Let \(V \) be a vector space over a field \(F \). A linear transformation \(T : V \to V \) is said to be \emph{idempotent} if \(T^2 = T \). Prove that if \(T \) is idempotent then \(V = V_0 \oplus V_1 \), where \(T(v_0) = 0 \) for all \(v_0 \in V_0 \) and \(T(v_1) = v_1 \) for all \(v_1 \in V_1 \).

3. Let \(V \) be a finite dimensional vector space and let \(W \) be a subspace. Show that \(\dim V/W = \dim V - \dim W \).

II. Group Theory

1. Show that if \(\sigma \in S_n \) is an \((n-1) \)-cycle, where \(n \geq 3 \), then \(C_{S_n}(\sigma) = \langle \sigma \rangle \).

2. Let \(N \) be a normal subgroup of \(G \). Show that if \(N \cap G' = \langle 1 \rangle \), then \(N \) is contained in the center of \(G \).

3. Let \(G \) be a group acting on the set \(S \) and let \(H \) be a subgroup of \(G \) acting transitively on \(S \). Show that if \(t \in S \) then \(G = G_tH \), where \(G_t \) is the stabilizer of \(t \) in \(G \).

4. Show that a group of order \(1998 = 2 \cdot 3^3 \cdot 37 \) must be solvable.

5. A subgroup \(H \) of a group \(G \) is subnormal if there exists a chain \(H = H_0 \leq H_1 \leq \cdots \leq H_k = G \) such that \(H_i \) is a normal subgroup of \(H_{i+1} \) for every \(i \). Prove that if \(P \) is a Sylow \(p \)-subgroup of a finite group \(G \) then \(P \) is a subnormal in \(G \) if and only if \(P \) is normal in \(G \).
III. Ring Theory

1. Let R be a commutative ring with 1 and let I and J be ideals of R such that $I + J = R$. Show that $R/(I \cap J) \cong R/I \oplus R/J$.

2. Let R be a non-zero ring with identity. Show that every proper ideal of R is contained in a maximal ideal.

3. Let R be a non-zero commutative ring with 1. Show that if I is an ideal of R such that $1 + a$ is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.

4. Let D be a unique factorization domain and F its field of fractions. Prove that if d is an irreducible element in D, then there is no $x \in F$ such that $x^2 = d$.

5. Let R be an integral domain, S a multiplicative set, and let $S^{-1}R = \{\frac{r}{s} \mid r \in R, s \in S\}$ (contained in the field of fractions of R). Show that if P is a prime ideal of R then, $S^{-1}P$ is either a prime ideal of $S^{-1}R$ or else equals $S^{-1}R$.

IV. Field Theory

1. Let K be a finite degree extension of the field F such that $[K : F]$ is relatively prime to 6. Show that if $u \in K$ then $F(u) = F(u^3)$.

2. Let F be a field and $f(x) \in F[x]$ an irreducible polynomial. Prove that there is a prime p, an integer $a \geq 0$ and a separable polynomial $g(x) \in F[x]$ such that $f(x) = g(x^{p^a})$.

3. Show that the Galois group of $x^3 - 7$ over \mathbb{Q} is S_3 and demonstrate the Galois correspondence between the subgroups of S_3 and the subfields of the splitting field. Which subfields are normal over \mathbb{Q}?

4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with exactly 2 real roots. Show that the Galois group of f is either S_4 or the dihedral group of order 8.

5. Let \mathbb{F}_q be the field of q elements and let $f(x)$ be a polynomial in $\mathbb{F}_q[x]$. Show that if α is a root of $f(x)$ in some extension of \mathbb{F}_q, then α^q is also a root of $f(x)$.

3