QUALIFYING EXAM IN ALGEBRA
JANUARY 1992

1. Work as many problems as you can. It is to your advantage to demonstrate a broad
 background.

2. If you feel there is a misprint or error in the statement of the problem, then interpret
 it in such a way that the problem is not trivial.
1. (a) Find the centralizer in S_7 of $(1\ 2\ 3)(4\ 5\ 6\ 7)$.
 (b) How many elements of order 12 are there in S_7?

2. Let $f : G \rightarrow H$ be a homomorphism of groups with kernel K and image I.
 (a) Show that if N is a subgroup of G then $f^{-1}(f(N)) = KN$.
 (b) Show that if L is a subgroup of H then $f(f^{-1}(L)) = I \cap L$.

3. Let G be a finite group.
 (a) Show that every proper subgroup of G is contained in a maximal subgroup.
 (b) Show that the intersection of all maximal subgroups of G is a normal subgroup.

4. Let N be a group with trivial center such that all automorphisms of N are inner automorphisms. Show that whenever N occurs as a normal subgroup of a group G, there is a subgroup H of G such that $G = H \times N$.

5. Let G be a subgroup of the symmetric group S_n. Show that if G contains an odd permutation then $G \cap A_n$ is of index 2 in G.

6. Show that a simple group of order 168 must be isomorphic to a subgroup of the alternating group A_8.

Group Theory
Ring Theory

1. Let p be a prime and let $F_p = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{Z}_p \right\}$.

 (a) Show that F_p, with the usual matrix operations, is a commutative ring with identity.
 (b) Show that F_7 is a field.
 (c) Show that F_{13} is not a field.

2. Let p be a prime.

 (a) Show that if $p \equiv 1 \pmod{4}$, then $x^2 + 1$ is not irreducible in $\mathbb{Z}_p[x]$.
 (b) Show that if $p \equiv 3 \pmod{4}$, then $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.

3. Let R be a commutative ring with 1 such that for every x in R there is an integer $n > 1$ (depending on x) such that $x^n = x$. Show that every prime ideal of R is maximal.

4. Let $D = \mathbb{Z}(\sqrt{13}) = \{ m + n\sqrt{13} \mid m, n \in \mathbb{Z} \}$ and $F = \mathbb{Q}(\sqrt{13})$ its field of fractions.

 Show the following:
 (a) $x^2 + 3x - 1$ is irreducible in $D[x]$ but not in $F[x]$.
 (b) D is not a unique factorization domain.

5. Let R be a ring.

 (a) Show that there is a unique smallest (with respect to inclusion) ideal A such that R/A is a commutative ring.
 (b) Give an example of a ring R such that for every proper ideal I, R/I is not commutative. Verify your example.
 (c) For the ring $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}$ with the usual matrix operations, find the ideal A of part (a).

6. Let R be a non-zero commutative ring with 1.

 (a) Let S be a multiplicative subset of R not containing 0 and let P be maximal in the set of ideals of R not intersecting S. Show that P is a prime ideal.
 (b) Show that the set of nilpotent elements of R is the intersection of all prime ideals.
Field Theory

1. Let \(K \) be an extension field of the field \(F \) such that \([K:F]\) is odd. Show that if \(u \in K \) then \(F(u) = F(u^2) \).

2. Let \(F \subset E \subset K \) be a tower of fields such that \(K = F(\alpha) \) with \(\alpha \) algebraic over \(F \). Prove that if \(f(x) \in F[x] \) is the minimal polynomial of \(\alpha \) over \(F \) and \(F \neq E \), then \(f(x) \) is not irreducible in \(E[x] \).

3. Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible polynomial of degree \(n \) with roots \(\alpha_1, \ldots, \alpha_n \). Show that \(\sum_{i=1}^{n} \frac{1}{\alpha_i} \) is a rational number.

4. Let \(f(x) = x^4 + x^3 + 4x - 1 \in \mathbb{Z}_5[x] \). Find the Galois group of the splitting field of \(f \) over \(\mathbb{Z}_5 \).

5. Let \(\eta \) be a complex primitive 11-th root of unity and let \(K = \mathbb{Q}(\eta) \). Find \(\text{Gal}(K/\mathbb{Q}) \) and express each intermediate field \(F \) between \(K \) and \(\mathbb{Q} \) as \(F = \mathbb{Q}(\beta) \) for some \(\beta \in K \).

6. Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible polynomial of degree 4 with exactly 2 real roots. Show that the Galois group of \(f \) is either \(S_4 \) or the dihedral group of order 8.

Linear Algebra

1. Let \(V \) and \(W \) be finite dimensional vector spaces and let \(T : V \rightarrow W \) be a linear transformation. Show that \(\dim(\ker T) + \dim(\text{Im } T) = \dim(V) \).

2. Let \(V \) be a finite dimensional vector space over the field \(F \). Let \(V^* \) be the dual space of \(V \) (that is, \(V^* \) is the vector space of linear transformations \(T : V \rightarrow F \)). Show that \(V \cong V^* \).