An upper bound for $B_2[g]$ sets

Gang Yu

Department of Mathematics, LeConte College, 1523 Greene street, University of South Carolina, Columbia, SC 29208, USA

Received 4 November 2005; revised 5 February 2006
Available online 9 June 2006
Communicated by Wenzhi Luo

Abstract

Suppose g is a fixed positive integer. For $N \geq 2$, a set $A \subset \mathbb{Z} \cap [1, N]$ is called a $B_2[g]$ set if every integer n has at most g distinct representations as $n = a + b$ with $a, b \in A$ and $a \leq b$. In this paper, we give an upper bound estimate for the size of such A, improving the existing results.

MSC: 11G05; 14H52

Keywords: Elliptic curves; 2-Descent procedure; Character sums

1. Introduction

For positive integers g and N, a set $A \subset [N]$ (where $[N] := \{1, 2, \ldots, N\}$) is called a $B_2[g]$ set if every integer n has at most g distinct representations as $n = a + b$ with $a, b \in A$ and $a \leq b$. (Thus $B_2[1]$ sets are the classical Sidon sets, or B_2 sets.)

Let $F(g, N)$ be the largest cardinality of a $B_2[g]$ set contained in $[N]$. The study for the asymptotic behavior of $F(g, N)$ has attracted a lot of attentions. (See O’Bryant’s excellent survey paper [11] for the complete up-to-date references.)

From the works of Singer [13] and Erdős and Turán [7] (observed by Erdős [6]), we have known that

$$F(1, N) = \sqrt{N} + O(N^{\alpha} + N^{1/4}),$$

(1.1)

E-mail address: yu@math.sc.edu.
where α is the smallest positive number such that, for every sufficiently large x, the interval $[x, x + x^{2\alpha}]$ contains a prime. The only issue remained in the study of $F(1, N)$ is the improvement of the error term. It is generally believed that the error term in (1.1) should be $O(N^\epsilon)$ (but not $O(1)$ though) for any $\epsilon > 0$.

For $g \geq 2$, there has been no asymptotic formula for $F(g, N)$ similar to (1.1) known to us. There is still a big gap between the best known lower and upper bounds for $F(g, N)$, even for $g = 2$. For the lower bound, there have been various constructions of $B_2[g]$ sets with large cardinality (cf., [3–5,9,10]). Each of these constructions gives a result $F(g, N) \geq (c + o(1))\sqrt{gN}$ for some constant $c > 1$.

There have also been a number of results concerning the upper bound for $F(g, N)$. To list a few, let

$$
\sigma(g) := \limsup_{N \to \infty} \frac{F(g, N)}{\sqrt{gN}}.
$$

Using the technique of Fourier analysis, Cilleruelo, Ruzsa and Trujillo [5] showed that $\sigma(g) \leq \sqrt{3.4745}$. Combining the idea of [5] with the consideration of the fourth moment of the Fourier transform of a $B_2[g]$ set, Green [8] showed that, among other things,

$$
\sigma(g) < \sqrt{3.4}.
$$

(1.2)

By a more careful analysis of the test function involved in Green’s study, Martin and O’Bryant improved Green’s result to $\sigma(g) \leq \sqrt{3.3819}$, which seems to be nearly the limit of what Green’s method can give.

It should be remarked that another result Green proved in [8], $\sigma(g) \leq \sqrt{3.5 - 1.75/g}$, has significantly improved the previous results for small g. In particular, it gives $\sigma(g) \leq \sqrt{2.625}$ for $g = 2$, the most interesting case that has been studied by many people (cf., [1,9,12]).

In this paper, we are interested in giving an upper bound for $\sigma(g)$. The result we shall prove gives an improvement for (1.2). More precisely, we shall prove

Theorem 1. We have

$$
\sigma(g) < \sqrt{3.2}.
$$

(1.3)

We can actually strengthen (1.3) a little bit, with the upper bound replaced by $\sqrt{3.2} - \kappa(g)$ for some positive $\kappa(g)$ which tends to 0 as $g \to \infty$. But we shall not do so since such a result does not yield any improvement for $\sigma(g)$ when g is small.

The new ingredient involved in the proof of Theorem 1 is based on the following observation: for any set $B \subset [N]$, either the difference set $B - B$ or the shifted sum set $B + B - N$ has a large concentration around 0.

Notation. We shall frequently use the notion $A \gtrsim B$ (respectively $A \lesssim B$) to mean that $A \geq (1 + o(1))B$ (respectively $A \leq (1 + o(1))B$), and $A \sim B$ to mean that $A = (1 + o(1))B$.

2. Two lemmas

For a set $\mathcal{B} \subset [N]$, we define the generating function of \mathcal{B} as

$$f_{\mathcal{B}}(\beta) = \sum_{b \in \mathcal{B}} e(\beta b), \quad \text{where } e(t) = \exp(2\pi it).$$

We also define that, for any $n \in \mathbb{Z}$,

$$r_{\mathcal{B}}(n) := \# \{(a, b) \in \mathcal{B} \times \mathcal{B}: a + b = n\}$$

and

$$d_{\mathcal{B}}(n) := \# \{(a, b) \in \mathcal{B} \times \mathcal{B}: a - b = n\}.$$

With our notation, a $B_2[g]$ set \mathcal{A} thus satisfies $r_{\mathcal{A}}(n) \leq 2g$ for any n. And our observation, as stated at the end of last section, essentially says that $d_{\mathcal{B}}(n) + r_{\mathcal{B}}(N + n)$ has an average value on short intervals around 0 larger than its overall average on $[-N, N]$. To precisely describe this phenomenon, we need introduce a weight function $w(x)$ into play.

Let $u(x) \in C^2[0, 1]$ be a real-valued function satisfying $u(x) \geq 0$ for all $x \in [0, 1]$ and

$$\int_0^1 u(x) \, dx = 1.$$

For $x \in [-1, 1]$, let

$$w(x) := \int_{0}^{1-|x|} u(t)u(t+|x|) \, dt. \quad (2.1)$$

We see that $w(x)$, as an even function on $[-1, 1]$, is non-negative and twice differentiable on $[0, 1]$. Moreover, $w(\pm 1) = 0$ and $\int_{-1}^{1} w(x) \, dx = 1$.

Lemma 2. Suppose $w(x)$ is a function satisfying the given conditions. For $\mathcal{B} \subset [N]$, let

$$D(L, w, \mathcal{B}) = \sum_{0 \leq |m| \leq L} w(m/L)d_{\mathcal{B}}(m)$$

and

$$R(L, w, \mathcal{B}) = \sum_{0 \leq |m| \leq L} w(m/L)r_{\mathcal{B}}(N + m).$$

Then for any positive integer $L \leq N$, we have

$$D(L, w, \mathcal{B}) + R(L, w, \mathcal{B}) \geq \frac{2|\mathcal{B}|^2L}{N+L} + O(|\mathcal{B}|^2/L). \quad (2.2)$$
Proof. For \(m \in \mathbb{Z} \cap [-L, L] \), let

\[
\phi(m/L) := \frac{1}{L} \sum_{1 \leq k \leq L - |m|} u(k/L)u((k + |m|)/L).
\]

Since \(u(x) \) is differentiable on \([0, 1]\), we have

\[
w(m/L) = \phi(m/L) + O\left(L^{-1} \right). \tag{2.3}
\]

From this and the definitions of \(D(L, w, B) \) and \(R(L, w, B) \), we thus have

\[
D(L, w, B) + R(L, w, B) = \sum_{0 \leq |m| \leq L} \phi(m/L)(d_B(m) + r_B(N + m)) + O\left(|B|^2 / L \right). \tag{2.4}
\]

Let \(K = N + L \). Note that for \(|m| < L \),

\[
r_B(N + m) = \frac{1}{K} \sum_{h=0}^{K-1} \left| f_B \left(\frac{h}{K} \right) \right|^2 e\left(-\frac{(N + m)h}{K} \right) \tag{2.5}
\]

and

\[
d_B(m) = \frac{1}{K} \sum_{h=0}^{K-1} \left| f_B \left(\frac{h}{K} \right) \right|^2 e\left(-\frac{mh}{K} \right). \tag{2.6}
\]

From (2.4)–(2.6), and the fact that \(\phi(1) = 0 \), we get

\[
D(L, w, B) + R(L, w, B) = \frac{1}{K} \sum_{h=0}^{K-1} \widehat{\phi}_L\left(-\frac{h}{K} \right) \left(\left| f_B \left(\frac{h}{K} \right) \right|^2 + \left(f_B \left(\frac{h}{K} \right) \right)^2 e\left(-\frac{Nh}{K} \right) \right) + O\left(|B|^2 / L \right), \tag{2.7}
\]

where

\[
\widehat{\phi}_L(\beta) = \sum_{0 \leq |m| \leq L} \phi(m/L)e(\beta m).
\]

It is easy to check that, for any \(\beta \in \mathbb{R} \),

\[
\widehat{\phi}_L(\beta) = \frac{1}{L} \left| \sum_{1 \leq k \leq L} u(k/L)e(\beta k) \right|^2 \geq 0. \tag{2.8}
\]

Note that

\[
\Re\left(\left| f_B \left(\frac{h}{K} \right) \right|^2 + \left(f_B \left(\frac{h}{K} \right) \right)^2 e\left(-\frac{Nh}{K} \right) \right) \geq 0. \tag{2.9}
\]
(2.8) and (2.9) together imply that the real part of each term in the sum in (2.7) is non-negative. Since $D(L, w, B) + R(L, w, B)$ is real, we thus have

$$D(L, w, B) + R(L, w, B) \geq \frac{2|B|^2 \hat{\phi}_L(0)}{K} + O(|B|^2 / L).$$ \hspace{1cm} (2.10)

Recall (2.3), and that $w(x)$ is even and differentiable on $[0, 1]$, then we have

$$\hat{\phi}_L(0) = \int_{-L}^{L} w(t/L) dt + O(1) = L + O(1),$$

which, put into (2.10), proves the lemma. \Box

Lemma 3. Suppose $\epsilon \in (0, \frac{1}{2})$ is any fixed number. For any B_{2g} set $A \subset \mathbb{N}$, we have

$$\sum_{1 \leq n \leq N^\epsilon} \left| f_A \left(\frac{n}{2N} \right) \right|^4 \lesssim (2g - 1)N|A|^2 - \frac{1}{2}|A|^4.$$ \hspace{1cm} (2.11)

Proof. A proof has essentially been included in [8, §8]. Note that the sum

$$S(A) := \frac{1}{2N} \sum_{n=-N}^{N-1} \left(\left| f_A \left(\frac{n}{2N} \right) \right|^2 - |A| \right)^2$$

represents the number of solutions of the equation

$$a - b = c - d, \quad a, b, c, d \in A, \quad a \neq b.$$

For any integer $n \geq 1$, there are at most $2g$ pairs (b, c) with $b, c \in A$ such that $b + c = n$. Thus the equation $a + d = b + c$ with $a, b, c, d \in A$ has at most $2g|A|^2$ solutions. This implies

$$S(A) \leq (2g - 1)|A|^2.$$ \hspace{1cm} (2.12)

We also note that

$$\left| f_A \left(\frac{n}{2N} \right) \right|^4 = \left(\left| f_A \left(\frac{n}{2N} \right) \right|^2 - |A| \right)^2 + O(|A|^3).$$

Hence,

$$\sum_{1 \leq n \leq N^\epsilon} \left| f_A \left(\frac{n}{2N} \right) \right|^4 \leq \sum_{1 \leq n \leq N^\epsilon} \left(\left| f_A \left(\frac{n}{2N} \right) \right|^2 - |A| \right)^2 + O(N^\epsilon |A|^3)$$

$$\leq \frac{1}{2} \left(2N \cdot S(A) - (f_A(0))^4 \right) + O(N^\epsilon |A|^3).$$ \hspace{1cm} (2.13)

The lemma then follows from (2.12) and (2.13). \Box
3. The function \(u(x)\)

The weight function \(w(x)\) involved in Lemma 2 is defined by (2.1) with \(u(x) \in C^2[0, 1]\) satisfying the conditions given there. In the proof for Theorem 1 that we will give in the next section, the upper bound for \(\sigma(g)\) is determined by the second moment of \(w(x)\)

\[
M(w) := \int_{-1}^{1} w^2(x) dx. \tag{3.1}
\]

Roughly speaking, the smaller \(M(w)\) is, the better an upper bound for \(\sigma(g)\) follows.

Lemma 4. There is such a function \(w(x)\) satisfying

\[
M(w) < 0.5771. \tag{3.2}
\]

Proof. Let

\[
h(x) = 1 + 0.0000028 \exp(60(x - 1/2)^2) + 3.4(x - 1/2)^2
\]

and

\[
u(x) = \frac{h(x)}{\int_{0}^{1} h(x) dx}.
\]

Then it is clear that \(u(x)\) is non-negative and twice differentiable on \([0, 1]\), and \(\int_{0}^{1} u(x) dx = 1\). For the \(w(x)\) given by (2.1), it can be checked by Maple that

\[
M(w) \leq 0.57706725 \ldots < 0.5771,
\]

which gives the lemma. \(\Box\)

Remarks. (1) The search for such \(u(x)\) (and thus \(w(x)\)) is closely related to a study of Green in [8]. He was, however, interested in proving a lower bound for \(M(w)\) for which \(w(x)\) is essentially defined by (2.1) with \(u(x)\) being a general (continuous) function supported on \([0, 1]\).

(2) There are many choices for \(u(x)\) which yield satisfactory results. For example, a simple choice of \(u(x) = \frac{6}{11}(1 + 10(x - 1/2)^2)\) (which has \(M(w) = 0.599776\ldots\)) implies \(\sigma(g) \leq \sqrt{3.2207}\). A more complicated choice of \(u(x)\) normalized from \(1 + a(x - 1/2)^2 + b(x - 1/2)^{12}\) for some constants \(a, b\) gives \(M(w) \approx 0.58\). The \(u(x)\) in Lemma 4 certainly is not a convenient choice, it however breaks the bound \(\sqrt{3.2}\) for \(\sigma(g)\).

(3) Though we do not know how to find the optimal value of \(M(w)\) (which exists and is unique following Green [8]), we can tell that the bound \(M(w) < 0.5771\) given in Lemma 4 cannot be improved too much. It has essentially been shown in [8] that

\[
M(w) > \frac{4}{7} = 0.5714\ldots,
\]

for any \(u(x)\).
4. Proof of Theorem 1

Let \(\mathcal{A} \subset [N] \) be a \(B_2[g] \) set with \(|\mathcal{A}| \gg \sqrt{N} \). Let \(c = \frac{|\mathcal{A}|^2}{gN} \). (We thus want to show that \(c < 3.2 \) when \(N \) is large.) Let \(L = \delta N \), where \(\delta \in (0, 1) \) is a parameter (independent of \(N \)) to be chosen later. Suppose \(w(x) \) is the function defined by (2.1) with \(u(x) \) given in the proof of Lemma 4.

From Lemma 2, we have

\[
D(L, w, \mathcal{A}) + R(L, w, \mathcal{A}) \gtrsim \frac{2\delta cgN}{1 + \delta}.
\] (4.1)

We want to give an upper bound for \(D(L, w, \mathcal{A}) + R(L, w, \mathcal{A}) \) which, along with (4.1), yields (1.3).

Since \(w(x) \) is non-negative and differentiable, we have

\[
R(L, w, \mathcal{A}) \leq 2g \sum_{0 \leq |m| \leq L} w(m/L) = 2g \int_{-L}^{L} w(t/L) dt + O(1) \sim 2g\delta N.
\] (4.2)

Let \(W(x) \) be the function of period 2 which takes value \(w(x/\delta) \) on \([-\delta, \delta]\) and 0 on the rest of its period \([-1, 1]\). Then \(W(x) \) is an even (and differentiable) function on \([-1, 1]\), thus has Fourier expansion

\[
W(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi x).
\]

This yields

\[
D(L, w, \mathcal{A}) = \frac{1}{2}a_0|\mathcal{A}|^2 + \sum_{n=1}^{\infty} a_n \left| f_{\mathcal{A}} \left(\frac{n}{2N} \right) \right|^2,
\] (4.3)

which can be seen by expanding the \(|f_{\mathcal{A}}(n/2N)|^2 \) on the right-hand side and changing the order of summation. According to the conditions \(w(x) \) satisfying, we have

\[
\frac{1}{2}a_0 = \frac{1}{2}\delta \quad \text{and} \quad a_n = O_{\delta}(n^{-2}) \quad \text{for } n \geq 1.
\]

Then

\[
\sum_{n > N^\epsilon} a_n \left| f_{\mathcal{A}} \left(\frac{n}{2N} \right) \right|^2 = O(N^{-\epsilon}|\mathcal{A}|^2) = o(|\mathcal{A}|^2),
\] (4.4)

and by Cauchy’s inequality

\[
\sum_{1 \leq n \leq N^\epsilon} a_n \left| f_{\mathcal{A}} \left(\frac{n}{2N} \right) \right|^2 \leq \left[\sum_{1 \leq n \leq N^\epsilon} a_n^2 \right] \left[\sum_{1 \leq n \leq N^\epsilon} \left| f_{\mathcal{A}} \left(\frac{n}{2N} \right) \right|^4 \right],
\] (4.5)
where from Parseval’s identity
\[
\sum_{1 \leq n \leq N^\varepsilon} a_n^2 \leq \sum_{n=1}^\infty a_n^2 = \delta M(w) - \frac{\delta^2}{2}.
\] (4.6)

Recall that, for our choice of \(w(x) \), we have \(M(w) < 0.5771 \). Thus, from (4.3)–(4.6), we have
\[
D(L, w, A) \lesssim \frac{\delta |A|^2}{2} + \sqrt{(0.5771 \delta - 0.5 \delta^2) \left((2g - 1)N|A|^2 - \frac{|A|^4}{2} \right)}.
\] (4.7)

An optimal choice of \(\delta \) (depending on \(g \)) based on (4.1), (4.2) and (4.7) gives a result which is a little stronger than Theorem 1. Just to prove (1.3), we use a worse bound for \(D(L, w, A) \) by replacing the \(2g - 1 \) by \(2g \) in (4.7). Then, combining (4.1), (4.2) and (4.7) together, we end up with
\[
\frac{2\delta c}{1 + \delta} \leq 2\delta + \frac{\delta c}{2} + \sqrt{(0.5771 \delta - 0.5 \delta^2)(2c - 0.5c^2)}.
\] (4.8)

Taking \(\delta = 0.237 \), we get from (4.8) that
\[
c \leq 3.199992566 \ldots < 3.2,
\]
as required.

5. Further remarks

Previous works on the upper bound for \(\sigma(g) \) essentially rely on the irregular distribution of either the sumset \(A + A \) or the difference set \(A - A \). In this paper, we have combined them together and obtained an improvement for the previous results for large \(g \). In our study, it naturally arises the following question.

Question. For a set of integers \(B \subset [N] \), how dense can the sumset \(B + B \) (weighted by \(r_B(n) \)) be over a subinterval \(I \subset [1, 2N] \)?

Note that the average value of \(r_B(n) \) for integers \(n \in [2N] \) is asymptotically \(\frac{|B|^2}{2N} \). Thus, we have
\[
\text{avg} |(B + B) \cap I| \sim \frac{|I||B|^2}{2N}.
\] (5.1)

In view of the irregular distribution of \(B + B \) on \([1, 2N]\), it is not surprising that there are short intervals \(I \subset [1, 2N] \) with \(|(B + B) \cap I| \) larger than the right-hand side of (5.1). Actually, we have the following more precise conjecture which, besides its application to \(B_2[g] \) sets, is of independent interest.
Conjecture 1. Suppose $\epsilon \in (0, 1)$ is a fixed number. For any $B \subset [N]$ satisfying $|B| = o(N)$, there is a subinterval $I \subset [1, 2N]$ with $|I| = L \gg N^\epsilon$ such that

$$\sum_{n \in I \cap \mathbb{Z}} r_B(n) \geq (2 + o(1)) \frac{|B|^2 L}{2N}.$$ \hspace{1cm} (5.2)

It is generally believed that the best upper bound one can expect for $B_2[g]$ ($g \geq 2$) sets would be $\sigma(g) \leq \sqrt{2}$ which, by a simple counting argument, directly follows from Conjecture 1.

We remark that the constant 2 in this conjecture cannot be improved. It is easy to check that, when B is uniformly distributed over $[1, N]$, $(2 + o(1)) \frac{|B|^2}{2N}$ is the maximal local density of $B + B$, attained over short intervals I around N. By “uniformly distributed,” here we mean that, for any $I \subset [1, N]$ with $|I| \gg N^{1+\epsilon} |B|^{-1}$, we have $|B \cap I| \sim \frac{|I| |B|}{N}$.

Martin and O’Bryant [10] conjectured that any $B_2[g]$ set $A \subset [N]$ with maximal size should be uniformly distributed over $[1, N]$. \(^1\) This then obviously yields the expected upper bound $\sigma(g) \leq \sqrt{2}$ for $g \geq 2$. Their conjecture, however, has only been proved for $g = 1$ (see Cilleruelo [2]).

While we do not know whether Conjecture 1 is true in general, it has actually been proved indirectly in [8] that, for any $B \subset [N]$, (5.2) holds with the 2 replaced by $\frac{8}{7}$. Also our proof of Theorem 1 is essentially consisting of two parts, in accordance with whether (5.2) holds with the constant 2 replaced by a number around $\frac{5}{4}$.

We remark that the expected estimate $\sigma(g) \leq \sqrt{2}$ also follows from the following weak version of Conjecture 1.

Conjecture 2. For a polynomial $f(x)$ with coefficients $\in \{0, 1\}$ and $f(1) = o(\deg(f))$, the polynomial $f^2(x)$ has a coefficient $\gg \frac{f^2(1)}{\deg(f)}$.

In estimating the upper bound for $\sigma(g)$, while it is not clear how far one can go with the techniques currently involved in the studies, it seems to us that any significant improvement may require non-trivial information about the distribution of the $B_2[g]$ set itself on $[1, N]$.

Acknowledgments

The author is grateful to the anonymous referee for many helpful comments and suggestions. He also thanks Kevin O’Bryant for the careful reading of the paper and pointing out to him some errors in an early version of the paper. The author also thanks Ken Berenhaut and Filip Saidak for showing him that Conjecture 2 does not hold without the condition $f(1) = o(\deg(f))$ (also Conjecture 1 does not hold without the condition $|B| = o(N)$).

References

\(^1\) It should be remarked that the more dense $B_2[g]$ sequences known to us are far to be well distributed.