Problem 1. Consider matrix A such that

$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & -3 \\ -1 & 4 & 2 & -10 \end{bmatrix}.$$

Please, find

- Basis and dimension of the row space of A.
- Basis and dimension of the column space of A.
- Null set of A. (We will learn this on Monday).
- $\text{nullity}(A)$. (We will learn this on Monday)

Problem 2. Consider $n \times n$ matrix A such that

$$\det(A) \neq 0$$

Please, find

- Basis and dimension of the row space of A.
- Basis and dimension of the column space of A.
- Null set of A. (We will learn this on Monday)
- $\text{nullity}(A)$. (We will learn this on Monday)

HINT! Problem 2 is simple! Please, think about $\det(A) \neq 0$ and dependence or independence of rows (columns) vectors of A.

Problem 3. Please, read, understand and write the proof of Theorem 4.15 from the book (row and Columns Spaces have equal dimension). Please, let me know if you need a copy of this theorem!!